

		Ph	ases	
-	se is a homogeneous p but separated from th		•	-
		<u>2 I</u>	Phases	
		Solid p	ohase - ice	
		Liquid p	hase - water	
Table	11.1 Characteristic Pr			Solids
Table		op e 1 11 e o	i Guses, Elquids, une	sonus
State of Matter	Volume/Shape	Density	Compressibility	Motion of Molecules
State of		-	-	Motion of
State of Matter	Volume/Shape Assumes the volume and	Density	Compressibility	Motion of Molecules

Dispersion Forces Continued		
Polarizability is the ease with which the ease	electron distribu	tion in the atom
Polarizability increases with:	Table 11.2	
greater number of electrons.	Melting Points of Similar Nonpolar Compound	
more diffuse electron cloud.	Compound	Melting Point (°C)
	CH ₄	-182.5
Dispersion forces usually increase	$\mathrm{CF}_4\downarrow$	-150.0↓
with molar mass.	$\text{CCl}_4\downarrow$	-23.0↓
	$\operatorname{CBr}_4 {\downarrow}$	90.0↓
	$\mathrm{CI}_4\downarrow$	171.0↓

Example 11.1 1 What type(s) of intermolecular forces exist between the following pairs? (a) HBr and H₂S (b) Cl₂ and CBr₄ (c) I₂ and NO₃⁻ (d) NH₃ and C₆H₆

Example 11.1 2

Strategy

Classify the species into three categories: ionic, polar (possessing a dipole moment), and nonpolar. Keep in mind that dispersion forces exist between *all* species.

Solution

- a) Both HBr and H₂S are polar molecules. Therefore, the intermolecular forces present are dipole-dipole forces, as well as dispersion forces.
- b) Both Cl_2 and CBr_4 are nonpolar, so there are only dispersion forces between these molecules.

Example 11.2 $_{1}$ Which of the following can form hydrogen bonds with water? CH₃OCH₃ CH₄ F₂ HCOOH Na⁺

Example 11.3 1

Gold (Au) crystallizes in a cubic close-packed structure (the facecentered cubic unit cell) and has a density of 19.3 g/cm^3 .

Calculate the atomic radius of gold in picometers.

Before the problem of X-rays from Two Layers of
AtomsInform the problem of the

Example 11.4 1

X-rays of wavelength 0.154 nm strike an aluminum crystal; the rays are reflected at an angle of 19.3° .

Assuming that n = 1, calculate the spacing between the planes of aluminum atoms (in pm) that is responsible for this angle of reflection.

The conversion factor is obtained from 1 nm = 1000 pm.

41

Example 11.4 2	
<i>Strategy</i> This is an application of Equation (11.1).	
Solution	
Converting the wavelength to picometers and using the angle of reflection (19.3°) , we write	
$d = \frac{n\lambda}{2\sin\theta} = \frac{\lambda}{2\sin\theta}$	
$=\frac{0.154nm\times\frac{1000pm}{1nm}}{2\sin 19.3^\circ}$	
= 233 <i>pm</i>	
McGraw Hill LLC 4	42

Example 11.5 2

Solution

NaCl has a structure based on a face-centered cubic lattice. One whole Na⁺ ion is at the center of the unit cell, and there are twelve Na⁺ ions at the edges. Because each edge Na⁺ ion is shared by four unit cells, the total number of Na⁺ ions is $1 + (12 \times \frac{1}{4}) = 4$.

Similarly, there are six Cl^- ions at the face centers and eight Cl^- ions at the corners. Each face-centered ion is shared by two unit cells, and each corner ion is shared by eight unit cells, so the total number of Cl^- ions is $\left(c_{-1}L_{-1}^{\prime}\right)$

$$\left(6 \times \frac{1}{2}\right) + \left(8 \times \frac{1}{8}\right) = 4.$$

Thus, there are four Na^+ ions and four Cl^- ions in each NaCl unit cell.

Check

This result agrees with sodium chloride's empirical formula.

© McGraw Hill LLC

45

Example 11.6 1 The edge length of the NaCl unit cell is 564 pm. What is the density of NaCl in g / cm³?

raw Hill LLO

Example 11.6 3 Converting amu to grams, we write $233.8 \text{ amu} \times \frac{1 \text{ g}}{6.022 \times 10^{23} \text{ amu}} = 3.882 \times 10^{-22} \text{ g}$ The volume of the unit cell is $V = a^3 = (564 \text{ pm})^3$. Converting pm³ to cm³, the volume is given by $V = (564 \text{ pm})^3 \times \left(\frac{1 \times 10^{-12} \text{ m}}{1 \text{ pm}}\right)^3 \times \left(\frac{1 \text{ cm}}{1 \times 10^{-2} \text{ m}}\right)^3 = 1.794 \times 10^{-22} \text{ cm}^3$ Finally, from the definition of density $density = \frac{\text{mass}}{\text{volume}} = \frac{3.882 \times 10^{-22} \text{ g}}{1.794 \times 10^{-22} \text{ cm}^3}$ $= 2.16 \text{ g/cm^3}$

Table 11.4 7	Types of Crystals an	d General Propertie	s
Type of Crystal	Force(s) Holding the Units Together	General Properties	Examples
Ionic	Electromagnetic attraction	Hard, brittle, high melting point, poor conductor of heat and electricity	NaCl, LiF, MgO, CaCO ₃
Covalent	Covalent bond	Hard, high melting point, poor conductor of heat and electricity	C (Diamond), SiO ₂ (quartz)
Molecular*	Dispersion forces, dipole- dipole forces, hydrogen bonds	Soft, low melting point, poor conductor of heat and electricity	Ar, CO ₂ , I ₂ , H ₂ O, C ₁₂ H ₂₂ O ₁₁ (sucrose)
Metallic	Metallic bond	Soft to hard, low to high melting point, good conductor of heat and electricity	All metallic element; for example, Na, Mg, Fe, Cu
¥Т. 1. 1. 1. 4	his category are crystal		- 4

	Example 11.7 2
Strategy	
-	en the vapor pressure of diethyl ether at one temperature and asked pressure at another temperature. Therefore, we need Equation
Solution	
Table 11.6	tells us that $\Delta H_{\rm vap} = 26.0$ kJ/mol. The data are
	$P_1 = 401 \mathrm{mmHg}$ $P_2 = ?$
	$T_1 = 18^{\circ}\text{C} = 291 \text{ K}$ $T_2 = 32^{\circ}\text{C} = 305 \text{ K}$
From Equa	tion (11.5) we have
	$\ln \frac{401}{P_2} = \frac{26,000 \text{ J/mol}}{8.314 \text{ J/K} \cdot \text{mol}} \left[\frac{291 \text{ K} - 305 \text{ K}}{(291 \text{ K})(305 \text{ K})} \right]$
	= -0.493

Example 11.7 3

Taking the antilog of both sides (see Appendix 4), we obtain

$$\frac{401}{P_2} = e^{-0.493} = 0.611$$

Hence

$$P_2 = 656 \,\mathrm{mmHg}$$

Check

We expect the vapor pressure to be greater at the higher temperature. Therefore, the answer is reasonable.

65

Boi	ling Point	
The <i>boiling point</i> is the temperature at white equal to the external pressure.	ch the (equilibrium)	vapor pressure of a liquid is
The <i>normal boiling point</i> is the temperature pressure is 1 atm. Table 11.6 Molar Heats of Vaporization for	ľ	bils when the external
Substance	Boiling Point * (°C)	$\Delta H_{\rm vap}$ (kJ/mol)
Argon (Ar)	-186	6.3
$Benzene(C_6H_6)$	80.1	31.0
Diethylether $(C_2H_5OC_2H_5)$	34.6	26.0
Ethanol(C_2H_5OH)	78.3	39.3
Mercury(Hg)	357	59.0
Methane (CH_4)	-164	9.2
Water (H_2O)	100	40.79
*Measured at 1 atm.		
Access the	e text alternative for slide images.	
D McGraw Hill LLC		

eat of Fusic	J 11
energy required to m	nelt 1 mole of a
or Selected Substance	ces
Melting point *(°C)	$\Delta H_{\rm fus}$ (kJ/mol)
-190	1.3
5.5	10.9
-116.2	6.90
-116.2 -117.3	6.90 7.61
	012 0
-117.3	7.61
-117.3 -39	7.61 23.4
•	or Selected Substand <u>Meltingpoint*(°C)</u> –190

Example 11.8 1

Calculate the amount of energy (in kilojoules) needed to heat 346 g of liquid water from 0°C to 182°C.

Assume that the specific heat of water is $4.184 \text{ J/g}^{\circ}\text{C}$ over the entire liquid range and that the specific heat of steam is 1.99 $\text{J/g}^{\circ}\text{C}$.

73

Example 11.8 4

The overall energy required is given by

$$q_{\text{overall}} = q_1 + q_2 + q_3$$

= 145 kJ + 783 kJ + 56.5 kJ
= 985 kJ

Check

All the qs have a positive sign, which is consistent with the fact that heat is absorbed to raise the temperature from 0°C to 182°C. Also, as expected, much more heat is absorbed during the phase transition.

