

1/5/23

Rates of Reaction					
Table 10.1 Rates of the	Time(s)	[Br ₂](M)	Rate(M/s)	$\mathbf{k} = \frac{\mathbf{rate}}{[\mathbf{Br}_2]} (\mathbf{s}^{-1}$)
	00	0.0120	4.20×10 ⁻⁵	3.50×10 ⁻³	_
	50.0	0.0101	3.52×10^{-5}	3.49×10^{-3}	
	100.0	0.00846	2.96×10 ⁻⁵	3.50×10^{-3}	
	150.0	0.00710	2.49×10^{-5}	3.51×10 ⁻³	
	200.0	0.00596	2.09×10^{-5}	3.51×10 ⁻³	
	250.0	0.00500	1.75×10^{-5}	3.50×10^{-3}	
	300.0	0.00420	1.48×10^{-5}	3.52×10^{-3}	
rate $\alpha [Br_2]$	350.0	0.00353	1.23×10 ⁻⁵	3.48×10^{-3}	
rate $= k [Br_2]$	400.0	0.00296	1.04×10^{-5}	3.51×10^{-3}	5.00 × 10 ⁻⁵
$k = \frac{\text{rate}}{[Br_2]} = \text{rate constant}$	nt				1.00×10 ⁹ - 1.00×10 ⁹ - 1.00×10 ⁹ -

0.00200 0.00600 0.0000 [84] (M)

C McGraw Hill LLC

7

 $=\!3.50\!\times\!10^{^{-3}}s^{^{-1}}$

1/5/23

Example 13.1 1 Write the rate expressions for the following reactions in terms of the disappearance of the reactants and the appearance of the products: (a) $I^-(aq) + OCI^-(aq) \rightarrow CI^-(aq) + OI^-(aq)$ (b) $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$

Example 13.1 2

Strategy

To express the rate of the reaction in terms of the change in concentration of a reactant or product with time, we need to use the proper sign (minus or plus) and the reciprocal of the stoichiometric coefficient.

Solution

(a) Because each of the stoichiometric coefficients equals 1,

rate =
$$-\frac{\Delta \left[I^{-}\right]}{\Delta t} = -\frac{\Delta \left[OCI^{-}\right]}{\Delta t} = \frac{\Delta \left[CI^{-}\right]}{\Delta t} = \frac{\Delta \left[OI^{-}\right]}{\Delta t}$$

(b) Here the coefficients are 4, 5, 4, and 6, so

rate
$$= -\frac{1}{4} \frac{\Delta [\text{NH}_3]}{\Delta t} = -\frac{1}{5} \frac{\Delta [\text{O}_2]}{\Delta t} = \frac{1}{4} \frac{\Delta [\text{NO}]}{\Delta t} = \frac{1}{6} \frac{\Delta [\text{H}_2\text{O}]}{\Delta t}$$

11

© McGraw Hill LLC

Example 13.2	
Consider the reaction	
$4\mathrm{NO}_{2}\left(g\right) + \mathrm{O}_{2}\left(g\right) \rightarrow 2\mathrm{N}_{2}\mathrm{O}_{5}\left(g\right)$	
Suppose that, at a particular moment during the reaction, molecular oxygen is reacting at the rate of 0.024 M /s.	
a) At what rate is N_2O_5 being formed?	
b) At what rate is NO ₂ reacting?	
McGraw Hill LLC	12

Example 13.2 ²

Strategy

To calculate the rate of formation of N_2O_5 and disappearance of NO_2 , we need to express the rate of the reaction in terms of the stoichiometric coefficients as in Example 13.1:

$$rate = -\frac{1}{4} \frac{\Delta [NO_2]}{\Delta t} = -\frac{\Delta [O_2]}{\Delta t} = \frac{1}{2} \frac{\Delta [N_2O_5]}{\Delta t}$$

We are given

$$\frac{\Delta \left[O_2 \right]}{\Delta t} = -0.024 M/s$$

where the minus sign shows that the concentration of O_2 is decreasing with time.

13

© McGraw Hill LLC

The Rate Law $_2$ F ₂ (g) + 2ClO ₂ (g) \rightarrow 2FClO ₂ (g)					
rate = $k \left[F_2 \right]^x \left[\text{ClO}_2 \right]^y$	Table 13.2 Rate data for reaction between F_2 and ClO_2				
	$[F_{2}](M)$	[CIO ₂](M)	Initial Rates (M/s)		
-	1.010	0.010	1.2×10 ⁻³		
Double $[F_2]$ with $[ClO_2]$ constant	2.010	0.040	4.8×10^{-3}		
Rate Doubles	3.020	0.010	2.4×10^{-3}		
x = 1					
$\label{eq:Quadruple} {[ClO_2]} with {[F_2]} contant$		rate = k [F	F_2][ClO ₂]		
Rate Quadruples					
y = 1					
Access the text alternative for slide images,					
© McGraw Hill LLC			17		

Example 13.3						
The reaction of nitric oxide with hydrogen at 1280°C is						
$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$						
 From the following data collected at this temperature, determine a) the rate law b) the rate constant c) the rate of the reaction when [NO] = 12.0×10⁻³ M and [H₂] = 6.0×10⁻³ M 						
Expe	riment	[NO](M)	[H ₂](M)	Initial Rates (M/s)		
	1	5.0×10 ⁻³	2.0×10 ⁻³	1.3×10 ⁻⁵		
	2	10.0×10^{-3}	2.0×10^{-3}	5.0×10^{-5}		
	3	10.0×10^{-3}	4.0×10^{-3}	10.0×10^{-5}		
		Access the text altern	ative for slide images.			
© McGraw Hill LLC						

Example 13.3 3

Solution

(a) Experiments 1 and 2 show that when we double the concentration of NO at constant concentration of H_2 , the rate quadruples. Taking the ratio of the rates from these two experiments

$$\frac{\text{rate}_2}{\text{rate}_1} = \frac{5.0 \times 10^{-5} \, M/\text{s}}{1.3 \times 10^{-5} \, M/\text{s}} \approx 4 = \frac{k \left(10.0 \times 10^{-3} M\right)^x}{k \left(5.0 \times 10^{-3} M\right)^x} \frac{\left(2.0 \times 10^{-3} M\right)^y}{\left(2.0 \times 10^{-3} M\right)^y}$$

Therefore,

$$\frac{\left(10.0\times10^{-3}M\right)^{x}}{\left(5.0\times10^{-3}M\right)^{x}} = 2^{x} = 4$$

or x = 2, that is, the reaction is second order in NO.

21

C McGraw Hill LLC

Example 13.3 5

b) The rate of constant *k* can be calculated using the data from any one of the experiments. Rearranging the rate law, we get

$$k = \frac{\text{rate}}{[\text{NO}]^2 [\text{H}_2]}$$

The data from experiment 2 give us

$$k = \frac{5.0 \times 10^{-5} M/\text{s}}{(10.0 \times 10^{-3} M)^2 (2.0 \times 10^{-3} M)}$$
$$= 2.5 \times 10^2 / M^2 \cdot \text{s}$$

23

C McGraw Hill LLC

Example 13.3 6

c) Using the known rate constant and concentrations of NO and H₂, we write

rate =
$$(2.5 \times 10^2 / M^2 \cdot s)(12.0 \times 10^{-3} M)^2 (6.0 \times 10^{-3} M)$$

= $2.2 \times 10^{-4} M/s$

Comment

Note that the reaction is first order in H_2 , whereas the stoichiometric coefficient for H_2 in the balanced equation is 2. The order of a reactant is not related to the stoichiometric coefficient of the reactant in the overall balanced equation.

24

© McGraw Hill LLC

1/5/23

Example 13.4 2

Strategy

The relationship between the concentrations of a reactant at different times in a first-order reaction is given by Equation (13.3) or (13.4). In (a) we are given $[A]_0 = 0.25M$ and asked for $[A]_1$ after 8.8 min.

In (b) we are asked to calculate the time it takes for cyclopropane to decrease in concentration from 0.25 M to 0.15 M.

No concentration values are given for (c). However, if initially we have 100 percent of the compound and 74 percent has reacted, then what is left must be (100% - 74%), or 26%. Thus, the ratio of the percentages will be equal to the ratio of the actual concentrations; that is, $[A]_{\mu} / [A]_{\mu} = 26\%/100\%$, or 0.26/1.00.

27

O McGraw Hill LL

Example 13.4 3 Solution (a) In applying Equation (13.4), we note that because k is given in units of s⁻¹, we must first convert 8.8 min to seconds: $8.8 \min \times \frac{60 \text{ s}}{1 \min} = 528 \text{ s}$ We write $\ln[A]_{r} = -kt + \ln[A]_{0}$ $= -(6.7 \times 10^{-4} \text{ s}^{-1})(528 \text{ s}) + \ln(0.25)$ = -1.74Hence, $[A]_{r} = e^{-1.74} = 0.18 M$ Note that in the ln [A]_{0} term, [A]_{0} is expressed as a dimensionless quantity (0.25) because we cannot take the logarithm of units.

Example 13.5 1

The rate of decomposition of azomethane $(C_2H_6N_2)$ is studied by monitoring the partial pressure of the reactant as a function of time:

 $CH_3 - N = N - CH_3(g) \rightarrow N_2(g) + C_2H_6(g)$

The data obtained at 300° C are shown in the following table:

	Time (s)	Partial pressure of azomethane (mmHg)	
	0	284	
	100	220	
	150	193	
	200	170	
	250	150	
	300	132	
Are these values	consistent with fir	st-order kinetics? If so, det	ermine

the rate constant.

31

O McGraw Hill LL

Example 13.5 2 **Strategy** To test for first-order kinetics, we consider the integrated first-order rate law that has a linear form, which is Equation (13.4) $\ln[A]_t = -kt + \ln[A]_0$ If the reaction is first order, then a plot of $\ln [A]_t$ versus t (y versus x) will produce a straight line with a slope equal to -k. Note that the partial pressure of azomethane at any time is directly proportional to its concentration in moles per liter (PV = nRT, so Pan/V). Therefore, we substitute partial pressure for concentration [Equation (13.5)]: $\ln P_t = -kt + \ln P_0$ where P_0 and P_t are the partial pressures of azomethane at t = 0and t = t, respectively.

First we construct		
i list we construct	the following table	of t versus $\ln P_t$.
	<i>t</i> (s)	ln P _t
	0	5.649
	100	5.394
	150	5.263
	200	5.136
	250	5.011
	300	4.883
Figure 13.11, whic that a plot of ln P _t indeed first order.	h is based on the da versus t yields a stra The slope of the line slope = $\frac{5.05-5.}{(233-33)}$	ta given in the table, shows hight line, so the reaction is e is given by $\frac{56}{3} = -2.55 \times 10^{-3} \text{ s}^{-1}$
	Access th	text alternative for slide images.

1/5/23

Example 13.6 1

The decomposition of ethane (C₂H₆) to methyl radicals is a first- order reaction with a rate constant of $5.36 \times 10^{-4} s^{-1}$ at 700°C:

 $C_2H_6(g) \rightarrow 2CH_3(g)$

Calculate the half-life of the reaction in minutes.

37

C McGraw Hill LLO

Example 13.6 ²

Strategy

To calculate the half-life of a first-order reaction, we use Equation (13.6). A conversion is needed to express the half-life in minutes.

Solution

For a first-order reaction, we only need the rate constant to calculate the half-life of the reaction. From Equation (13.6)

 $t_{\frac{1}{2}} = \frac{0.693}{k}$ $= \frac{0.693}{5.36 \times 10^{-4} \text{ s}^{-1}}$ $= 1.29 \times 10^3 \text{ s} \times \frac{1 \text{ min}}{60 \text{ s}}$ = 21.5 min

38

© McGraw Hill LLC

Example 13.7 1 Iodine atoms combine to form molecular iodine in the gas phase I(g) + I(g) → I₂(g) This reaction follows second-order kinetics and has the high rate constant 7.0×10⁹/M · s at 23° C. a) If the initial concentration of I was 0.086 *M*, calculate the concentration after 2.0 min. b) Calculate the half-life of the reaction if the initial concentration of I is 0.60 *M* and if it is 0.42 *M*.

Example 13.7 2

Strategy

- a) The relationship between the concentrations of a reactant at different times is given by the integrated rate law. Because this is a second-order reaction, we use Equation (13.7).
- b) We are asked to calculate the half-life. The half-life for a second-order reaction is given by Equation (13.8).

Solution

(a) To calculate the concentration of a species at a later time of a second–order reaction, we need the initial concentration and the rate constant. Applying Equation (13.7)

$$\frac{1}{[\mathbf{A}]_{t}} = kt + \frac{1}{[\mathbf{A}]_{0}}$$
$$\frac{1}{[\mathbf{A}]_{t}} = \left(7.0 \times 10^{9} / M \cdot \mathrm{s}\right) \left(2.0 \min \times \frac{60 \,\mathrm{s}}{1 \min}\right) + \frac{1}{0.086 \, M}$$

41

C McGraw Hill LLO

Example 13.7 3 where [A], is the concentration at t = 2.0 min. Solving the equation, we get $[A]_{t} = 1.2 \times 10^{-12} M$ This is such a low concentration that it is virtually undetectable. The very large rate constant for the reaction means that nearly all the I atoms combine after only 2.0 min of reaction time. b) We need Equation (13.8) for this part. For [I]_0 = 0.60 M. $t_{\frac{1}{2}} = \frac{1}{k[A]_0}$ $= \frac{1}{(7.0 \times 10^9/M \cdot s)(0.60 M)}$ $= 2.4 \times 10^{-10} s$

Example 13.7 4

For
$$[I]_0 = 0.42 \ M$$

 $t_1 = \frac{1}{(7.0 \times 10^9 / M \cdot s)(0.42 \ M)}$ $= 3.4 \times 10^{-10} \ s$

Check

These results confirm that the half-life of a second-order reaction, unlike that of a first-order reaction, is not a constant but depends on the initial concentration of the reactant(s).

Does it make sense that a larger initial concentration should have a shorter half-life?

43

O McGraw Hill LL

Order	Rate Law	Equation	Half-Life		
0	rate $= k$	$[\mathbf{A}] = [\mathbf{A}]_0 - kt$	$t_{1/2} = \frac{[A]_0}{2k}$		
1	rate = $k[A]$	$\ln[A] = \ln[A]_0 - kt$	$t_{1/2} = \frac{\ln 2}{k}$		
2	rate = $k[A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	$t_{1/2} = \frac{1}{k[A]_0}$		
		and the book of the increase			

Example 13.8 1					
The rate constants for the decomposition of acetaldehyde					
$CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$					
were measured at five different temperatures. The data are shown in the table. Plot ln k versus 1/T, and determine the activation energy (in kJ/mol) for the reaction. Note that the reaction is " $3/2$ " order in CH ₃ CHO, so k has the units of $1/M^{\frac{1}{2}} \cdot s$.					
	~(1/ M · · s)	I (K)			
	0.011 700				
	0.035 730				
	0.105 760				
	0.343 790				
0.789 810					
Access the text alternative for slide images, area Hall LLC 48					

_ 48

Example 13.8 2

Strategy

Consider the Arrhenius equation written as a linear equation

$$\ln k = \left(-\frac{E_a}{R}\right) \left(\frac{1}{T}\right) + \ln A$$

A plot of $\ln k$ versus 1/T (*y* versus *x*) will produce a straight line with a slope equal to $-E_a/R$. Thus, the activation energy can be determined from the slope of the plot.

49

Example 13.8 3					
Solution					
First we convert the	data to the fol	lowing table			
	ln k	$1/T(K^{-1})$			
	-4.51	1.43×10^{-3}			
	-3.35	1.37×10^{-3}			
	-2.254	1.32×10^{-3}			
	-1.070	1.27×10^{-3}			
	-0.237	1.23×10^{-3}			
A plot of these data yields the graph in Figure 13.18. The slope of					
the line is calculated	d from two pair	rs of coordinates:			
slope = $\frac{-4.00 - (-0.45)}{(1.41 - 1.24) \times 10^{-3} \text{ K}^{-1}} = -2.09 \times 10^{4} \text{ K}$					
	Access the text alt	emative for slide images.			
© McGraw Hill LLC					

Example 13.8 4

From the linear form of Equation (13.13)

slope = $-\frac{E_a}{R} = -2.09 \times 10^4 \text{ K}$ $E_a = (8.314 \text{ J/K} \cdot \text{mol})(2.09 \times 10^4 \text{ K})$ = $1.74 \times 10^5 \text{ J/mol}$ = $1.74 \times 10^2 \text{ kJ/mol}$

Check

It is important to note that although the rate constant itself has the units $1/M^{\frac{1}{2}}$.s, the quantity ln *k* has no units (we cannot take the logarithm of a unit).

51

O McGraw Hill LL

Example 13.9 1

The rate constant of a first-order reaction is $3.46 \times 10^{-2} s^{-1}$ at 298 K.

What is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol?

53

O McGraw Hill LLO

Example 13.9 2 Strategy A modified form of the Arrhenius equation relates two rate constants at two different temperatures [see Equation (13.14)]. Make sure the units of *R* and E_a are consistent. Solution The data are $k_1 = 3.46 \times 10^{-2} \text{ s}^{-1} k_2 = ?$ $T_1 = 298 \text{ K}$ $T_2 = 350 \text{ K}$ Substituting in Equation (13.14), $\ln \frac{3.46 \times 10^{-2} \text{ s}^{-1}}{k_2} = \frac{50.2 \times 10^3 \text{ J/mol}}{8.314 \text{ J/K} \cdot \text{mol}} \left[\frac{298 \text{ K} - 350 \text{ K}}{(298 \text{ K})(350 \text{ K})} \right]$

Example 13.9 3

We convert E_a to units of J/mol to match the units of R. Solving the equation gives

$$\ln \frac{3.46 \times 10^{-2} \,\mathrm{s}^{-1}}{k_2} = -3.0$$
$$\frac{3.46 \times 10^{-2} \,\mathrm{s}^{-1}}{k_2} = e^{-3.01} = 0.050$$
$$k_2 = 0.71 \,\mathrm{s}^{-1}$$

Check

© McGraw Hill LLC

The rate constant is expected to be greater at a higher temperature. Therefore, the answer is reasonable.

55

Reaction Mechanisms 3					
<i>Intermediates</i> are species that appear i in the overall balanced equation.	n a reaction mechanism but not				
An intermediate is always formed in an early elementary step and consumed in a later elementary step.					
Elementary step :	$NO + NO \rightarrow N_2O_2$				
+Elementary step :	$N_2O_2 + O_2 \rightarrow 2NO_2$				
Overall reaction :	$2NO + O_2 \rightarrow 2NO_2$				
The <i>molecularity of a reaction</i> is the man elementary step.	number of molecules reacting in				
• Unimolecular reaction – elementar	ry step with 1 molecule				
• <i>Bimolecular reaction</i> – elementary step with 2 molecules					
• <i>Termolecular reaction</i> – elementar	• Termolecular reaction – elementary step with 3 molecules				
McGraw Hill LLC					

1/5/23

Example 13.10 ²

Strategy

- a) Because the overall reaction can be broken down into elementary steps, knowing the elementary steps would enable us to write the overall reaction.
- b) What are the characteristics of an intermediate? Does it appear in the overall reaction?
- c) What determines which elementary step is rate determining? How does a knowledge of the ratedetermining step help us write the rate law of a reaction?

63

C McGraw Hill LLC

Example 13.10 4

Check

There are two criteria that must be met for a proposed reaction mechanism to be plausible.

- 1) The individual steps (elementary steps) must sum to the corrected overall reaction.
- 2) The rate-determining step (the slow step) must have the same rate law as the experimentally determined rate law.

65

C McGraw Hill LLC

Catalysts 2

In *heterogeneous catalysis*, the reactants and the catalysts are in different phases.

- Haber synthesis of ammonia
- Ostwald process for the production of nitric acid
- Catalytic converters

In *homogeneous catalysis*, the reactants and the catalysts are dispersed in a single phase, usually liquid.

- Acid catalysis
- Base catalysis
- 67

© McGraw Hill LLC

