

1/5/23

4

6

10

Example 14.1

Write expressions for K_c , and K_p if applicable, for the following reversible reactions at equilibrium:

(a) $HF(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + F^-(aq)$

(b) $2NO(g) + O_2(g) \leftrightarrow 2NO_2(g)$

(c) CH₃COOH (aq) + C₂H₅OH (aq) \leftrightarrow CH₃COOC₂H₅ (aq) + H₂O (*l*)

9

© McGraw Hill LLC

Example 14.1 ²

Strategy

Keep in mind the following facts: (1) the K_p expression applies only to gaseous reactions and (2) the concentration of solvent (usually water) does not appear in the equilibrium constant expression.

10

14

Example 14.2¹

The following equilibrium process has been studied at 230°C:

 $2NO (g) + O_2 (g) \leftrightarrow 2NO_2 (g)$

In one experiment, the concentrations of the reacting species at equilibrium are found to be [NO] = 0.0542 *M*, $[O_2] = 0.127 M$, and $[NO_2] = 15.5 M$. Calculate the equilibrium constant (K_c) of the reaction at this temperature.

13

© McGraw Hill LLC

Example 14.2 2

Strategy

The concentrations given are equilibrium concentrations. They have units of mol/L, so we can calculate the equilibrium constant (K_c) using the law of mass action [Equation (14.2)].

Solution

The equilibrium constant is given by

$$
K_{\rm c} = \frac{\left[\text{NO}_2\right]^2}{\left[\text{NO}\right]^2 \left[\text{O}_2\right]}
$$

Substituting the concentrations, we find that

 (15.5) $(0.0542)^2(0.127)$ $K_c = \frac{(15.5)^2}{(0.0542)^2 (0.127)} = 6.44 \times 10^5$

14

Example 14.2 ₃

Check

Note that K_c is given without units. Also, the large magnitude of K_c is consistent with the high product (NO₂) concentration relative to the concentrations of the reactants (NO and O_2).

15

© McGraw Hill LLC

Example 14.3¹

The equilibrium constant K_p for the decomposition of phosphorus pentachloride to phosphorus trichloride and molecular chlorine

 $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$

is found to be 1.05 at 250°C. If the equilibrium partial pressures of PCl₅ and PCl₃ are 0.875 atm and 0.463 atm, respectively, what is the equilibrium partial pressure of $Cl₂$ at 250°C?

16

© McGraw Hill LLC

Example 14.3 ²

Strategy

The concentrations of the reacting gases are given in atm, so we can express the equilibrium constant in K_p . From the known K_p value and the equilibrium pressures of PCl₃ and PCl₅, we can solve for P_{Cl_2} .

17

© McGraw Hill LLC

20

Example 14.3 4 *Check* Note that we have added atm as the unit for P_{Cl_2} .

19

© McGraw Hill LLC

Example 14.4¹

Methanol (CH3OH) is manufactured industrially by the reaction

 $CO (g) + 2H_2 (g) \leftrightarrow CH_3OH (g)$

The equilibrium constant (K_c) for the reaction is 10.5 at 220°C. What is the value of K_p at this temperature.

20

 \odot McGraw Hill LLC

Example 14.4 ²

Strategy

The relationship between K_c and K_p is given by Equation (14.5). What is the change in the number of moles of gases from reactants to product? Recall that

Δ*n* = moles of gaseous products − moles of gaseous reactants

What unit of temperature should we use?

21

© McGraw Hill LLC

© McGraw Hill LLC Example 14.4 ₃ *Solution* The relationship between K_c and K_p is $K_p = K_c (0.0821 T)^{\Delta n}$ Because $T = 273 + 220 = 493$ K and $\Delta n = 1 - 3 = -2$, we have $K_p = (10.5) (0.0821 \times 493)^{-2}$ $= 6.41 \times 10^{-3}$

Example 14.4 4

Check

Note that K_p like K_c , is a dimensionless quantity. This example shows that we can get a quite different value for the equilibrium constant for the same reaction, depending on whether we express the concentrations in moles per liter or in atmospheres.

© McGraw Hill LLC

24

Example 14.5 ²

Strategy

We omit any pure solids or pure liquids in the

equilibrium constant expression because their activities are unity.

Solution

a) Because (NH₄)₂Se is a solid, the equilibrium constant K_c is given by

 $K_c = [NH_3]^2 [H_2Se]$

Alternatively, we can express the equilibrium constant K_p in terms of the partial pressures of $NH₃$ and $H₂Se$:

 $\boldsymbol{K}_{\text{p}} = \boldsymbol{P}_{\text{NH}_3}^2 \boldsymbol{P}_{\text{H}_2\text{Se}}$

27

© McGraw Hill LLC

\odot McGraw Hill L Example 14.5 3 b) Here AgCl is a solid so the equilibrium constant is given by $K_c = \left\lceil \mathbf{Ag}^+ \right\rceil \left\lceil \mathbf{Cl}^- \right\rceil$ Because no gases are present, there is no K_p expression. c) We note that P_4 is a solid and PCl₃ is a liquid, so they do not appear in the equilibrium constant expression. Thus, K_a is given by $K_c = \frac{1}{\left[\text{Cl}_2 \right]^6}$ 28

Example 14.5 4

Alternatively, we can express the equilibrium constant in terms of the pressure of $Cl₂$:

$$
K_{\rm p}=\frac{1}{P_{\rm Cl_2}^6}
$$

29

Example 14.6 ²

Strategy

Remember that pure solids do not appear in the equilibrium constant expression. The relationship between K_p and K_c is given by Equation (14.5).

Solution

a) Using Equation (14.8) we write

$$
K_p = P_{\text{CO}_2}
$$

$$
= 0.236
$$

31

© McGraw Hill LLC

When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant.

34

o McGraw Hill LL

Example 14.7¹

The reaction for the production of ammonia can be written in a number of ways:

```
(a) N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)
```

```
(b) \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \leftrightarrow NH_3(g)
```

```
(c) \frac{1}{3}N_2(g)+H_2(g) \leftrightarrow \frac{2}{3}NH_3(g)
```
Write the equilibrium constant expression for each formulation. (Express the concentrations of the reacting species in mol/L.)

d) How are the equilibrium constants related to one another?

35

© McGraw Hill LLC

 \odot McGraw Hill L Example 14.7 4 (d) $K_a = K_b^2$ $K_{\rm a} = K_{\rm c}^3$ $K_b^2 = K_c^3$ or $K_b = K_c^{\frac{3}{2}}$ 38

38

1/5/23

Writing Equilibrium Constant Expressions

- 1. The concentrations of the reacting species in the condensed phase are expressed in *M*. In the gaseous phase, the concentrations can be expressed in *M* or in atm.
- 2. The concentrations of pure solids, pure liquids and solvents do not appear in the equilibrium constant expressions.
- 3. The equilibrium constant is a dimensionless quantity.
- 4. In quoting a value for the equilibrium constant, you must specify the balanced equation and the temperature.
- 5. If a reaction can be expressed as a sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.
- 39

© McGraw Hill LLC

44

Example 14.8 ²

At the start of a reaction, there are 0.249 mol N_2 , 3.21×10^{-2} mol H₂, and 6.42×10^{-4} mol NH₃ in a 3.50–L reaction vessel at 375°C. If the equilibrium constant (K_c) for the reaction

$$
N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)
$$

is 1.2 at this temperature, decide whether the system is at equilibrium. If it is not, predict which way the net reaction will proceed.

43

© McGraw Hill LLC

Example 14.8 3 *Solution* The initial concentrations of the reacting species are $K_p = P_{\text{CO}_2}$ $[H_2]_0 = \frac{3.21 \times 10^{-2} \text{ mol}}{3.50 \text{ L}} = 9.17 \times 10^{-3} M$ $\left[\text{NH}_3\right]_0 = \frac{6.42 \times 10^{-4} \text{ mol}}{3.50 \text{ L}} = 1.83 \times 10^{-4} \text{ M}$

44

Example 14.8 4

Next we write

$$
Q_{\rm c} = \frac{\left[\text{NH}_3\right]_0^2}{\left[\text{N}_2\right]_0 \left[\text{H}_2\right]_0^3} = \frac{\left(1.83 \times 10^{-4}\right)^2}{\left(0.0711\right) \left(9.17 \times 10^{-3}\right)^3} = 0.611
$$

Because Q_c is smaller than K_c (1.2), the system is not at equilibrium. The net result will be an increase in the concentration of NH_3 and a decrease in the concentrations of N_2 and H2. That is, the net reaction will proceed from left to right until equilibrium is reached.

45

A mixture of 0.500 mol H_2 and 0.500 mol I_2 was placed in a 1.00 $-L$ stainless-steel flask at 430°C. The equilibrium constant K_c for the reaction H₂ (*g*) + I₂ (*g*) \leftrightarrow 2HI (*g*) is 54.3 at this temperature. Calculate the concentrations of H_2 , I_2 , and HI at equilibrium.

47

© McGraw Hill LLC

Example 14.9 2

Strategy

We are given the initial amounts of the gases (in moles) in a vessel of known volume (in liters), so we can calculate their molar concentrations. Because initially no HI was present, the system could not be at equilibrium. Therefore, some H2 would react with the same amount of I_2 (why?) to form HI until equilibrium was established.

48

 \odot McGraw Hill LL

47

Example 14.9 s

Step 3: At equilibrium, the concentrations are

 $[H_2] = (0.500 - 0.393) M = 0.107 M$ $\left[I_2 \right] = (0.500 - 0.393) M =$ **0.107** *M* $[HII] = 2 \times 0.393 M = 0.786 M$

Check You can check your answers by calculating K_c using the equilibrium concentrations. Remember that K_c is a constant for a particular reaction at a given temperature.

51

Example 14.10²

Strategy

From the initial concentrations we can calculate the reaction quotient (Q_c) to see if the system is at equilibrium or, if not, in which direction the net reaction will proceed to reach equilibrium. A comparison of Q_c with K_c also enables us to determine if there will be a depletion in H_2 and I_2 or HI as equilibrium is established.

53

© McGraw Hill LLC

Example 14.10 3

Solution

First we calculate Q_c as follows:

$$
Q_{\rm c} = \frac{\left[\text{HI}\right]_0^2}{\left[\text{H}_2\right]_0 \left[\text{I}_2\right]_0} = \frac{\left(0.0224\right)^2}{\left(0.00623\right)\left(0.00414\right)} = 19.5
$$

Because Q_c (19.5) is smaller than K_c (54.3), we conclude that the net reaction will proceed from left to right until equilibrium is reached (see Figure 14.4); that is, there will be a depletion of H_2 and I_2 and a gain in HI.

54

© McGraw Hill LL

56

Example 14.10 6

Collecting terms, we get

 $50.3x^2 - 0.654x + 8.98 \times 10^{-4} = 0$

This is a quadratic equation of the form $ax^2 + bx + c = 0$. The solution for a quadratic equation (see Appendix 4) is

$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

Here we have a = 50.3, b = $-$ 0.654, and $c = 8.98 \times 10^{-4}$, so that

$$
x = \frac{0.654 \pm \sqrt{(-0.654)^2 - 4(50.3)(8.98 \times 10^{-4})}}{2 \times 50.3}
$$

x = 0.0114 M or x = 0.00156 M

57

Example 14.10 s

Check

You can check the answers by calculating K_c using the equilibrium concentrations. Remember that K_c is a constant for a particular reaction at a given temperature.

© McGraw Hill LLC

62

© McGraw Hill LLC *Le Châtelier's Principle* ² Changes in Concentration $aA + bB \leftrightarrow cC + dD$ **Change Shifts the Equilibrium** Increase concentration of product(s) left Decrease concentration of product(s) right Increase concentration of reactant(s) right Decrease concentration of reactant(s) left 61

Example $14.11₁$ At 720 \degree C, the equilibrium constant K_c for the reaction $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$ is 2.37×10^{-3} . In a certain experiment, the equilibrium concentrations are $[N_2] = 0.683 M$, $[H_2] = 8.80 M$, and $[NH_3] =$ 1.05 *M*. Suppose some NH3 is added to the mixture so that its concentration is increased to 3.65 *M*. (a) Use Le Châtelier's principle to predict the shift in direction of the net reaction to reach a new equilibrium. (b) Confirm your prediction by calculating the reaction quotient Q_c and comparing its value with K_c .

64

Example 14.11 ²

Strategy

- (a) What is the stress applied to the system? How does the system adjust to offset the stress?
- (b) At the instant when some $NH₃$ is added, the system is no longer at equilibrium. How do we calculate the Q_c for the reaction at this point? How does a comparison of Q_c with K_c tell us the direction of the net reaction to reach equilibrium.

63

Example 14.11 4

(b) At the instant when some of the NH₃ is added, the system is no longer at equilibrium. The reaction quotient is given by

> \vert NH₃ \vert $\left[\text{N}_2 \right]_0 \left[\text{H}_2 \right]$ (3.65) $(0.683)(8.80)$ $Q_c = \frac{[NH_3]^2_0}{[N_2]_0 [H_2]^3_0}$ 2 $\frac{3.65}{2}$ $= 2.86 \times 10^{-2}$ $=\frac{(3.65)}{(0.683)(8.80)}$

Because this value is greater than 2.37×10^{-3} , the net reaction shifts from right to left until Q_c equals K_c .

65

© McGraw Hill LLC

© McGraw Hill LLC *Le Châtelier's Principle* ³ Changes in Volume and Pressure $A(g) + B(g) \leftrightarrow C(g)$ **Change Shifts the Equilibrium** Increase pressure Side with fewest moles of gas Decrease pressure Side with most moles of gas Increase volume Side with most moles of gas Decrease volume Side with fewest moles of gas 67 67

Example $14.12₂$

Strategy

A change in pressure can affect only the volume of a gas, but not that of a solid because solids (and liquids) are much less compressible. The stress applied is an increase in pressure. According to Le Châtelier's principle, the system will adjust to partially offset this stress. In other words, the system will adjust to decrease the pressure. This can be achieved by shifting to the side of the equation that has fewer moles of gas. Recall that pressure is directly proportional to moles of gas: $PV = nRT$ so $P \propto n$.

69

© McGraw Hill LLC

70

Example 14.12 4

Check

In each case, the prediction is consistent with Le Châtelier's principle*.*

71

Example 14.13¹

Consider the following equilibrium process between dinitrogen tetrafluoride (N_2F_4) and nitrogen difluoride (NF_2):

 $N_2F_4(g) \leftrightarrow 2NF_2(g)$ $\Delta H^{\circ} = 38.5$ kJ/mol

Predict the changes in the equilibrium if

a) the reacting mixture is heated at constant volume;

- b) some N_2F_4 gas is removed from the reacting mixture at constant temperature and volume;
- c) the pressure on the reacting mixture is decreased at constant temperature; and
- d) a catalyst is added to the reacting mixture.
- 75

© McGraw Hill LLC

© McGraw Hill LL Example $14.13₂$ *Strategy* a) What does the sign of Δ*H*° indicate about the heat change (endothermic or exothermic) for the forward reaction? b) Would the removal of some N_2F_4 increase or decrease the Q_c of the reaction? c) How would the decrease in pressure change the volume of the system? d) What is the function of a catalyst? How does it affect a reacting system not at equilibrium? at equilibrium? 76

Solution

a) The stress applied is the heat added to the system. Note that the $N_2F_4 \rightarrow 2NF_2$ reaction is an endothermic process ($\Delta H^{\circ} > 0$), which absorbs heat from the surroundings. Therefore, we can think of heat as a reactant

heat + $N_2F_4(g) \leftrightarrow 2NF_2(g)$

The system will adjust to remove some of the added heat by undergoing a decomposition reaction (from left to right).

77

Example 14.13

Comment

The equilibrium constant remains unchanged in this case because temperature is held constant. It might seem that K_c should change because NF_2 combines to produce N_2F_4 . Remember, however, that initially some N_2F_4 was removed. The system adjusts to replace only some of the N_2F_4 that was removed, so that overall the amount of N_2F_4 has decreased. In fact, by the time the equilibrium is reestablished, the amounts of both NF_2 and N_2F_4 have decreased. Looking at the equilibrium constant expression, we see that dividing a smaller numerator by a smaller denominator gives the same value of K_c .

79

© McGraw Hill LLC

Example 14.13 6 c) The stress applied is a decrease in pressure (which is accompanied by an increase in gas volume). The system will adjust to remove the stress by increasing the pressure. Recall that pressure is directly proportional to the number of moles of a gas. In the balanced equation we see that the formation of NF_2 from N_2F_4 will increase the total number of moles of gases and hence the pressure. Therefore, the system will shift from left to right to reestablish equilibrium. The equilibrium constant will remain unchanged because temperature is held constant.

80

© McGraw Hill LLC

40

79

Example 14.13 $_7$

d) The function of a catalyst is to increase the rate of a reaction. If a catalyst is added to a reacting system not at equilibrium, the system will reach equilibrium faster than if left undisturbed. If a system is already at equilibrium, as in this case, the addition of a catalyst will not affect either the concentrations of NF_2 and N_2F_4 or the equilibrium constant.

81

