

Common Ion EffectThe common ion effect is the shift in equilibrium causedby the addition of a compound having an ion in commonwith the dissolved substance.The presence of a common ion suppresses the ionizationof a weak base.Consider mixture of CH₃COONa (strong electrolyte) andCH₃COONa (s) \rightarrow Na⁺(aq) + CH₃COO⁻(aq)CH₃COONa(s) \rightarrow Na⁺(aq) + CH₃COO⁻(aq)CH₃COOH(aq) É H⁺(aq) + CH₃COO⁻(aq)

Henderson-Hasselbalch Equation Consider mixture of salt NaA and weak acid HA. NaA(s) \rightarrow Na⁺(aq) + A⁻(aq) HA(aq) É H⁺(aq) + A⁻(aq) $\begin{bmatrix} H^+ \end{bmatrix} = \frac{K_a \begin{bmatrix} HA \\ A^- \end{bmatrix}$ Henderson-Hasselbalch equation $-\log \begin{bmatrix} H^+ \end{bmatrix} = -\log K_a - \log \begin{bmatrix} HA \\ A^- \end{bmatrix}$ Henderson-Hasselbalch equation $-\log \begin{bmatrix} H^+ \end{bmatrix} = -\log K_a + \log \begin{bmatrix} A^- \\ HA \end{bmatrix}$ pH = pK_a + log $\frac{[conjugate base]}{[acid]}$ pH = pK_a + log $\frac{[conjugate base]}{[acid]}$

Strategy

- a) We calculate $[H^+]$ and hence the pH of the solution by following the procedure in Example 15.8.
- b) CH₃COOH is a weak acid (CH₃COOH \leftrightarrow CH₃COO⁻ + H⁺), and CH₃COONa is a soluble salt that is completely dissociated in solution (CH₃COONa \rightarrow Na⁺ + CH₃COO⁻).

The common ion here is the acetate ion, CH₃COO⁻. At equilibrium, the major species in solution are CH₃COOH, CH₃COO⁻, Na⁺, H⁺, and H₂O. The Na⁺ ion has no acid or base properties and we ignore the ionization of water. Because K_a is an equilibrium constant, its value is the same whether we have just the acid or a mixture of the acid and its salt in solution. Therefore, we can calculate [H⁺] at equilibrium and hence pH if we know both CH₃COOH and [CH₃COO⁻] at equilibrium.

5

O McGraw Hill LLO

Example 16.1 4 Assuming $0.20 - x \approx 0.20$, we obtain $1.8 \times 10^{-5} = \frac{x^2}{0.20 - x} \approx \frac{x^2}{0.20}$ or $x = [H^+] = 1.9 \times 10^{-3} M$ Thus, $pH = -\log(1.9 \times 10^{-3}) = 2.72$

	Example	e 16.1 5	
Sodium acetate is a completely in solu	a strong electro tion:	lyte, so it diss	sociates
CH ₂ COON	$a(aa) \rightarrow Na^+$	$aa) + CH_{2}CO$	$O^{-}(aa)$
	0.30	M = 0.30	M
F1 1 1 1		1 ~ 1	
The initial concent of the species invo	rations, change lved in the equ CH ₃ COOH(<i>aq</i>)	es, and final control ilibrium are $(\leftrightarrow H^+(aq) + (aq))$	oncentrations CH ₃ COO ⁻ (<i>aq</i>)
The initial concent of the species invo Initial (<i>M</i>):	rations, change lved in the equ CH ₃ COOH (<i>aq</i>) 0.20	ilibrium are $(aq) \leftrightarrow H^+(aq) + 0$	oncentrations CH ₃ COO ⁻ (aq) 0.30
The initial concent of the species invo Initial (<i>M</i>): Change (<i>M</i>):	rations, change lved in the equ CH ₃ COOH (<i>aq</i>) 0.20 -x	es, and final co ilibrium are) $\leftrightarrow H^+(aq) + 0$ +x	CH ₃ COO ⁻ (aq) 0.30 +x

Example 16.1 7 **Check** Comparing the results in (a) and (b), we see that when the common ion (CH₃COO⁻) is present, according to Le Châtelier's principle, the equilibrium shifts from right to left. This action decreases the extent of ionization of the weak acid. Consequently, fewer H⁺ ions are produced in (b) and the pH of the solution is higher than that in (a). As always, you should check the validity of the assumptions.

Example 16.2 ²

Strategy

What constitutes a buffer system? Which of the preceding solutions contains a weak acid and its salt (containing the weak conjugate base)? Which of the preceding solutions contains a weak base and its salt (containing the weak conjugate acid)? Why is the conjugate base of a strong acid not able to neutralize an added acid?

13

C McGraw Hill LLO

- a) Calculate the pH of a buffer system containing 1.0 *M* CH₃COOH and 1.0 *M* CH₃COONa.
- b) What is the pH of the buffer system after the addition of 0.10 mole of gaseous HCl to 1.0 L of the solution? Assume that the volume of the solution does not change when the HCl is added.

15

O McGraw Hill LL

Example 16.3 2 Strategy a) The pH of the buffer system before the addition of HCl can be calculated with the procedure described in Example 16.1, because it is similar to the common ion problem. The K_a of CH₃COOH is 1.8×10⁻⁵ (see Table 15.3). b) The reaction describing the buffer action, in this case, is CH₃COOH⁻ + H⁺ → CH₃COOH.

	Exar	nple 16	5.3 5		
b)	When HCl is added to the solu	ation, the init	tial changes a	are	
		HCl(aq)	\rightarrow H ⁺ (ac	(q) Cl ⁻ (aq)	
	Initial (mol):	0.10	0	0	
	Change (mol):	-0.10	+0.10	+0.10	
	Final (mol):	0	0.10	0.10	
deGraw Hill L	The Cl ⁻ ion is a spectator i conjugate base of a strong a strong acid HCl react comp buffer, which is CH ₃ COO ⁻ . work with moles rather that cases the volume of the soli added. A change in volume number of moles.	on in solution acid. The H ⁺ letely with th At this point n molarity. T ution may ch will change	n because it i ions provide ne conjugate t it is more co he reason is lange when a the molarity	is the ed by the base of the onvenient to that in some substance is , but not the	19

Ez	xample 1	6.3 6		
The neutralization reaction	is summarized	l next:		
	CH ₃ COO ⁻ (aq	$() + H^+(aq)$	\rightarrow CH ₃ COOH	(<i>aq</i>)
Initial (mol):	1.0	0.10	1.0	
Change (mol):	-0.10	-0.10	+0.10	
Final (mol):	0.9	0	1.1	
Finally, to calculate the pH acid, we convert back to m solution.	of the buffer a olarity by divid	fter neutral ling moles	ization of the by 1.0 L of	

	Exan	nple 1	6.3 7	
Initial (M):	CH ₃ CO	$OH(aq) \leftarrow$	\rightarrow H ⁺ (aq) +	$CH_3COO^-(aq)$
initial (<i>M</i>).		1.1	0	0.90
Change (M):		- <i>x</i>	+ x	+ x
Equilibrium (<i>M</i>):		1.1 - x	x	0.90 + x
1	$K_{\rm a} = \frac{\left[\rm H \right]}{\left[\rm H \right]}$ $.8 \times 10^{-5} = \frac{\left(x \right)}{\left[\rm H \right]}$	$\frac{1}{CH_{3}COO} = \frac{1}{CH_{3}COO} + \frac{1}{CH_{3$	DO-] H])	
Hall LLC				

Example 16.3 s
Assuming $0.90 + x \approx 0.09$ and $1.1 - x \approx 1.1$, we obtain
$1.8 \times 10^{-5} = \frac{(x)(0.90+x)}{(1.1-x)} \approx \frac{x(0.90)}{1.1}$
or $x = [H^+] = 2.2 \times 10^{-5} M$
Thus,
$pH = -\log(2.2 \times 10^{-5}) = 4.66$
Check
The pH decreases by only a small amount upon the addition of HCl. This is consistent with the action of a buffer solution.

22

© McGraw Hill LLC

Example 16.4 $_{2}$

Strategy

For a buffer to function effectively, the concentrations of the acid component must be roughly equal to the conjugate base component. According to Equation (16.4), when the desired pH is close to the pK_a of the acid, that is, when $pH \approx pK_a$,

25

Example 16.4 3 **Solution** Because phosphoric acid is a triprotic acid, we write the three stages of ionization as follows. The K_a values are obtained from Table 15.5 and the pK_a values are found by applying Equation (16.3). H₃PO₄ (*aq*) à à à H⁺ (*aq*) + H₂PO₄⁻ (*aq*) $K_{a_1} = 7.5 \times 10^{-3}$; $pK_{a_1} = 2.21$ H₂PO₄⁻ (*aq*) à à à H⁺ (*aq*) + HPO₄²⁻ (*aq*) $K_{a_2} = 6.2 \times 10^{-8}$; $pK_{a_2} = 7.21$ HPO₄²⁻ (*aq*) à à A H⁺ (aq) + PO₄³⁻ (*aq*) $K_{a_3} = 4.8 \times 10^{-13}$; $pK_{a_3} = 12.32$

26

© McGraw Hill LL0

The most suitable of the three buffer systems is $HPO_4^{2-}/H_2PO_4^{-}$, because the pK_a of the acid $H_2PO_4^{-}$ is closest to the desired pH. From the Henderson-Hasselbalch equation we write

Strategy

The reaction between CH₃COOH and NaOH is

 $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$

We see that 1 mol $CH_3COOH = 1$ mol NaOH. Therefore, at every stage of the titration we can calculate the number of moles of base reacting with the acid, and the pH of the

solution is determined by the excess acid or base left over. At the equivalence point, however, the neutralization is complete and the pH of the solution will depend on the extent of the hydrolysis of the salt formed, which is CH₃COONa.

35

© McGraw Hill LLC

Example 16.5 3	
Solution	
a) The number of moles of NaOH in 10.0 mL is	
$10.0 \text{ mL} \times \frac{0.100 \text{ mol NaOH}}{11 \text{ NaOH soln}} \times \frac{11 \text{ L}}{1000 \text{ mL}} = 1.00 \times 10^{-3} \text{ mol}$	
The number of moles of CH ₃ COOH originally present in 25.0 mL of solution is	
$25.0 \text{ mL} \times \frac{0.100 \text{ mol CH}_3\text{COOH}}{1 \text{ L CH}_3\text{COOH soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 2.50 \times 10^{-3} \text{ mol}$	
We work with moles at this point because when two solutions are mixed, the solution volume increases. As the volume increases, molarity will change but the number of moles will remain the same.	
sGnw Hill LLC 33	6

Example 16.5 4 The changes in number of moles are summarized next: $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$ Initial (mol): 2.50×10^{-3} 1.00×10^{-3} 0 Change (mol): $-1.00\!\times\!10^{-3} -\!1.00\!\times\!10^{-3} +\!1.00\!\times\!10^{-3}$ 1.00×10^{-3} Final (mol): 1.50×10^{-3} 0 At this stage we have a buffer system made up of $\rm CH_3COOH$ and CH_3COO^- (from the salt, CH_3COONa) Access the text alternative for slide image © McGraw Hill LLC

Example 16.5 s
To calculate the pH of the solution, we write

$$K_{a} = \frac{\left[H^{+}\right]\left[CH_{3}COO^{-}\right]}{\left[CH_{3}COOH\right]}$$

$$\left[H^{+}\right] = \frac{\left[CH_{3}COOH\right]K_{a}}{\left[CH_{3}COO^{-}\right]}$$

$$= \frac{\left(1.50 \times 10^{-3}\right)\left(1.8 \times 10^{-5}\right)}{1.00 \times 10^{-3}} = 2.7 \times 10^{-5} M$$
Therefore,

$$pH = -\log\left(2.7 \times 10^{-5}\right) = 4.57$$

38

b) These quantities (that is, 25.0 mL of 0.100 *M* NaOH reacting with 25.0 mL of 0.100 *M* CH₃COOH) correspond to the equivalence point. The number of moles of NaOH in 25.0 mL of the solution is

 $25.0 \text{ mL} \times \frac{0.100 \text{ mol NaOH}}{1 \text{ L NaOH soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 2.50 \times 10^{-3} \text{ mol}$

The changes in number of moles are summarized next:

 $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$

 2.50×10^{-3}

Initial(mol): 2.50×10^{-3} 2.50×10^{-3} 0 Change (mol): -2.50×10^{-3} -2.50×10^{-3} $+2.50 \times 10^{-3}$

0

Access the text alternative for slide images.

0

39

McGraw Hill LLO

Final (mol):

Example 16.5 7 At the equivalence point, the concentrations of both the acid and the base are zero. The total volume is (25.0 + 25.0) mL or 50.0 mL, so the concentration of the salt is $[CH_{3}COONa] = \frac{2.50 \times 10^{-3} \text{ mol}}{50.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$ = 0.0500 mol/L = 0.0500 MThe next step is to calculate the pH of the solution that results from the hydrolysis of the CH₃COO⁻ ions.

Following the procedure described in Example 15.13 and looking up the base ionization constant (K_b) for CH₃COO⁻ in Table 15.3, we write

$$K_{\rm b} = 5.6 \times 10^{-10} = \frac{\left[{\rm CH}_{3}{\rm COOH}\right] \left[{\rm OH}^{-}\right]}{\left[{\rm CH}_{3}{\rm COO}^{-}\right]} = \frac{x^{2}}{0.0500 - x}$$
$$x = \left[{\rm OH}^{-}\right] = 5.3 \times 10^{-6} M, \text{ pH} = 8.72$$

41

C McGraw Hill LLC

	Exa	ample 1	6.5 ,	
c) After the add past the equi originally pr	dition of 35.0 valence point esent is) mL of NaC nt. The numb	0H, the soluti per of moles of	on is well of NaOH
35.0 mI	$L \times \frac{0.100 \text{ mol}}{1 \text{ L NaOF}}$	$\frac{\text{NaOH}}{\text{H soln}} \times \frac{1}{100}$	$\frac{L}{0 \text{ mL}} = 3.50 \times$	$\times 10^{-3}$ mol
The changes	in number o	of moles are	summarized	next:
CH ₃ CO	OH(aq) + N	laOH (<i>aq</i>) —	→ CH3COON	$a(aq) + H_2O(l)$
Initial(mol):	2.50×10^{-3}	3.50×10^{-3}	0	
Change (mol):	-2.50×10^{-3}	-2.50×10^{-3}	$+2.50 \times 10^{-3}$	
Final (mol):	0	1.00×10^{-3}	2.50×10^{-3}	
McGraw Hill LLC	Acce	ss the text alternative for slid	: images.	

At this stage we have two species in solution that are responsible for making the solution basic: OH^- and CH_3COO^- (from CH_3COONa). However, because OH^- is a much stronger

base than CH_3COO^- , we can safely neglect the hydrolysis of the CH_3COO^- ions and calculate the pH of the solution using only the concentration of the OH^- ions. The total volume of the combined solutions is (25.0 + 35.0) mL or 60.0 mL, so we calculate OH^- concentration as follows:

$$\begin{bmatrix} OH^{-} \end{bmatrix} = \frac{1.00 \times 10^{-3} \text{ mol}}{60.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$
$$= 0.0167 \text{ mol/L} = 0.0167 M$$
$$pOH = -\log \begin{bmatrix} OH^{-} \end{bmatrix} = -\log 0.0167 = 1.78$$
$$pH = 14.00 - 1.78 = 12.22$$

43

O McGraw Hill LLO

Calculate the pH at the equivalence point when 25.0 mL of 0.100 M NH₃ is titrated by a 0.100 M HCl solution.

45

C McGraw Hill LLO

Example 16.6 ²

Strategy

The reaction between NH₃ and HCl is

 $NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$

We see that 1 mol NH₃ = 1 mol HCl. At the equivalence point, the major species in solution are the salt NH₄Cl (dissociated into NH₄⁺ and Cl⁻ ions) and H₂O. First, we determine the concentration of NH₄Cl formed. Then we calculate the pH as a result of the NH₄⁺ ion hydrolysis. The Cl⁻ ion, being the conjugate base of a strong acid HCl, does not react with water. As usual, we ignore the ionization of water.

46

© McGraw Hill LLC

Solution

The number of moles of NH₃ in 25.0 mL of 0.100 M solution is

$$25.0 \text{ mL} \times \frac{0.100 \text{ mol NH}_3}{1 \text{ L NH}_3} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 2.50 \times 10^{-3} \text{ mol}$$

At the equivalence point the number of moles of HCl added equals the number of moles of NH_3 . The changes in number of moles are summarized below:

	$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$				
	Initial(mol):	2.50×10^{-3}	2.50×10^{-3}	0	
	Change (mol):	-2.50×10^{-3}	-2.50×10^{-3}	$+2.50 \times 10^{-3}$	
	Final (mol):	0	0	2.50×10^{-3}	
		Access the text alto	emative for slide images.		
raw Hill LLC					

47

© McC

Example 16.6 s Step 1: We represent the hydrolysis of the cation NH_4^+ and let x be the equilibrium concentration of NH_3 and H^+ ions in mol/L:				
	$\operatorname{NH}_{4}^{+}(aq)$	$\rightarrow \mathrm{NH}_{3}(aq)$	$+ \mathrm{H}^{+}(aq)$	
Initial (mol):	0.0500	0.000	0.000	
Change (mol):	-x	+x	+x	
Equilibrium (mol):	(0.0500 - x)	x	x	
© McGraw Hill LLC				49

Check

Note that the pH of the solution is acidic. This is what we would expect from the hydrolysis of the ammonium ion.

51

O McGraw Hill LLO

1/8/23

Example 16.7 4 **Strategy** The choice of an indicator for a particular titration is based on the fact that its pH range for color change must overlap the steep portion of the titration curve. Otherwise we cannot use the color change to locate the equivalence point.

Solution

- a) Near the equivalence point, the pH of the solution changes abruptly from 4 to 10. Therefore, all the indicators except thymol blue, bromophenol blue, and methyl orange are suitable for use in the titration.
- b) Here the steep portion covers the pH range between 7 and 10; therefore, the suitable indicators are cresol red and phenolphthalein.
- c) Here the steep portion of the pH curve covers the pH range between 3 and 7; therefore, the suitable indicators are bromophenol blue, methyl orange, methyl red, and chlorophenol blue.
- 59

O McGraw Hill LLO

Sol	ubility	Products	
Compound	K _{sp}	Compound	K _{sp}
Aluminum hydroxide [Al(OH)3]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF2)	1.7×10^{-6}	Lead(II) iodide (PbI2)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO3)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₃]	1.2×10^{-11}
Calcium carbonate (CaCO ₁)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF2)	4.0×10^{-11}	Mercury(I) chloride (Hg2Cl2)	3.5×10^{-18}
Calcium hydroxide [Ca(OH)2]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca3(PO4)2]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH)3]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag2CO3)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}

Silver iodide (AgI)

Silver sulfate (Ag₂SO₄)

Silver sulfide (Ag₂S)

Tin(II) sulfide (SnS)

Zinc sulfide (ZnS)

Strontium carbonate (SrCO3)

Strontium sulfate (SrSO₄)

Zinc hydroxide [Zn(OH)2]

 8.3×10^{-17}

 1.4×10^{-5}

 6.0×10^{-51}

 1.6×10^{-9}

 3.8×10^{-7}

 1.0×10^{-26}

 1.8×10^{-14} 3.0×10^{-23}

Iron(III) hydroxide [Fe(OH)3]	1.1×10^{-36}	Strontium st
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfi
Lead(II) carbonate (PbCO3)	3.3×10^{-14}	Zinc hydrox
Lead(II) chloride (PbCl ₂)	2.4×10^{-4}	Zinc sulfide
	A second by A second self-	
	Access the text alternat	the for since integes.

 5.1×10^{-12}

 2.2×10^{-20}

 6.0×10^{-37}

 1.6×10^{-14}

Copper(I) iodide (CuI)

Copper(II) sulfide (CuS)

Copper(II) hydroxide [Cu(OH)2]

Iron(II) hydroxide [Fe(OH)2]

61

C McGraw Hill LLC

The solubility of calcium sulfate (CaSO₄) is found to be 0.67 g/L. Calculate the value of K_{sp} for calcium sulfate.

O McGraw Hill LL

Example 16.8 3 Solution Consider the dissociation of CaSO₄ in water. Let *s* be the molar solubility (in mol/L) of CaSO₄. $\operatorname{CaSO}_4(s) \leftrightarrow \operatorname{Ca}^{2+}(aq) + \operatorname{SO}_4^{2-}(aq)$ 0 Initial (M): 0 Change (M): +s-S+sEquilibrium (M): S S The solubility product for CaSO₄ is $K_{sp} = \left\lceil \operatorname{Ca}^{2+} \right\rceil \left\lceil \operatorname{SO}_{4}^{2-} \right\rceil = s^2$ O McGraw Hill LLC

66

Example 16.8 s Now we can calculate K_{sp} : $K_{sp} = [Ca^{2+}][SO_4^{2-}]$ $= (4.9 \times 10^{-3})(4.9 \times 10^{-3})$ $= 2.4 \times 10^{-5}$

Example 16.9 1

Using the data in Table 16.2, calculate the solubility of copper(II) hydroxide, $Cu(OH)_2$, in g/L.

Compound	K _{sp}	Compound	Kap
Aluminum hydroxide [Al(OH)3]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO3)	8.1×10^{-9}	Lead(II) fluoride (PbF2)	4.1×10^{-8}
Barium fluoride (BaF2)	1.7×10^{-6}	Lead(II) iodide (PbI2)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi2S3)	1.6×10^{-72}	Magnesium carbonate (MgCO3)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-11}
Calcium carbonate (CaCO3)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF2)	4.0×10^{-11}	Mercury(I) chloride (Hg2Cl2)	3.5×10^{-18}
Calcium hydroxide [Ca(OH)2]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca3(PO4)2]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH)3]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide [Cu(OH)2]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-51}
Iron(II) hydroxide [Fe(OH)2]	1.6×10^{-14}	Strontium carbonate (SrCO3)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH)3]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO3)	3.3×10^{-14}	Zinc hydroxide [Zn(OH)2]	1.8×10^{-14}
Lead(II) chloride (PbCl ₂)	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-23}

е мас 68

Strategy

We are given the K_{sp} of Cu(OH)₂ and asked to calculate its solubility in g/L. The sequence of conversion steps, according to Figure 16.9(b), is

69

O McGraw Hill LLO

From the K_{sp} value in Table 16.2, we solve for the molar solubility of Cu(OH)₂ as follows:

	$2.2 \times 10^{-20} = 4s^3$
	$s^{3} = \frac{2.2 \times 10^{-20}}{4} = 5.5 \times 10^{-21}$
Hence	$s = 1.8 \times 10^{-7} M$
Finally, from the mol solubility, we calcula	lar mass of Cu(OH) ₂ and its molar ate the solubility in g/L:
solubility of Cu(O	$H)_{2} = \frac{1.8 \times 10^{-7} \text{ mol Cu(OH)}_{2}}{1 \text{ L soln}} \times \frac{97.57 \text{ g Cu(OH)}_{2}}{1 \text{ mol Cu(OH)}_{2}}$
© McGraw Hill LLC	$= 1.8 \times 10^{-5} \mathrm{g/L}$

71

Relationship of K_{sp} and Molar Solubility

Table 16.3 Relationship Between $K_{\mbox{\tiny sp}}$ and Molar Solubility (s)

Compound	K _{sp} Expression	Cation	Anion	Relation Between K_{sp} and s
AgCl	$\left[Ag^{+}\right]\left[Cl^{-}\right]$	S	S	$K_{sp} = s^2; s = \left(K_{sp}\right)^{\frac{1}{2}}$
BaSO_4	$\left[\operatorname{Ba}^{2*}\right]\left[\operatorname{SO}_{4}^{2}\right]$	S	S	$K_{sp} = s^2; s = \left(K_{sp}\right)^{\frac{1}{2}}$
Ag ₂ CO ₃	$\left[Ag^{+}\right]^{2}\left[CO_{3}^{2-}\right]$	2s	S	$K_{sp} = 4s^3; s = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$
PbF ₂	$\left[Pb^{2+}\right]\left[F^{-}\right]^{2}$	S	2 <i>s</i>	$K_{sp} = 4s^3; s = \left(\frac{K_{sp}}{4}\right)^{\frac{2}{3}}$
$Al(OH)_3$	$\left[Al^{3+}\right]\left[OH^{-}\right]^{3}$	S	35	$K_{sp} = 27s^4; s = \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$
$Ca_3(PO_4)_2$	$\left[Ca^{2+}\right]^3 \left[PO_4^{3-}\right]^2$	35	2s	$K_{sp} = 108s^5; s = \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$
	Access	the text alternati	ve for slide imas	7 <u>05.</u>

© McGra

Example 16.10 1

Exactly 200 mL of 0.0040 *M* BaCl₂ are mixed with exactly 600 mL of 0.0080 *M* K₂SO₄. Will a precipitate form?

73

O McGraw Hill LL

Example 16.10 ²

Strategy

Under what condition will an ionic compound precipitate from solution? The ions in solution are Ba²⁺, Cl⁻, K⁺, and SO₄²⁻. According to the solubility rules listed in Table 4.2 (p. 125), the only precipitate that can form is BaSO₄. From the information given, we can calculate $[Ba^{2+}]and[SO_4^{2-}]$ because we know the number of moles of moles of the ions in the original solutions and the volume of the combined solution. Next, we calculate the ion product Q (Q = $[Ba^{2+}]_0 [SO_4^{2-}]_0$) and compare the value of Q with K_{sp} of BaSO₄ to see if a precipitate will form, that is, if the solution is supersaturated.

74

© McGraw Hill LLC

Example 16.10 4

Solution

The number of moles of Ba^{2+} present in the original 200 mL of solution is

$$200 \text{ mL} \times \frac{0.0040 \text{ mol Ba}^{2+}}{1 \text{ L soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 8.0 \times 10^{-4} \text{ mol Ba}^{2+}$$

The total volume after combining the two solutions is 800 mL. The concentration of Ba^{2+} in the 800 mL volume is

$$\begin{bmatrix} Ba^{2+} \end{bmatrix} = \frac{8.0 \times 10^{-4} \text{ mol}}{800 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L soln}}$$
$$= 1.0 \times 10^{-3} M$$

75

C McGraw Hill LLO

Example 16.10 6

Now we must compare Q and K_{sp} . From Table 16.2,

 $\operatorname{BaSO}_{4}(s) \leftrightarrow \operatorname{Ba}^{2+}(aq) + \operatorname{SO}_{4}^{2-}(aq) \qquad K_{sp} = 1.1 \times 10^{-10}$

As for Q, $Q = \left[Ba^{2+} \right]_0 \left[SO_4^{2-} \right]_0 = (1.0 \times 10^{-3}) (6.0 \times 10^{-3})$ $= 6.0 \times 10^{-6}$

Therefore, $Q > K_{sp}$

The solution is supersaturated because the value of Q indicates that the concentrations of the ions are too large. Thus, some of the BaSO₄ will precipitate out of solution until

 $\left[Ba^{2+} \right] \left[SO_4^{2-} \right] = 1.1 \times 10^{-10}$

77

O McGraw Hill LL

Example 16.11

A solution contains $0.020 M \text{ Cl}^-$ ions and $0.020 M \text{ Br}^-$ ions. To separate the Cl⁻ ions from the Br⁻ions, solid AgNO₃ is slowly added to the solution without changing the volume. What concentration of Ag⁺ ions (in mol/L) is needed to precipitate as much AgBr as possible without precipitating AgCl?

78

© McGraw Hill LLC

Example 16.11 2

Strategy

In solution, AgNO₃ dissociates into Ag⁺ and NO₃⁻ ions. The Ag⁺ ions then combine with the Cl⁻ and Br⁻ ions to form AgCl and AgBr precipitates. Because AgBr is less soluble (it has a smaller K_{sp} than that of AgCl), it will precipitate first. Therefore, this is a fractional precipitation problem. Knowing the concentrations of Cl⁻ and Br⁻ ions, we can calculate [Ag⁺] from the K_{sp} values. Keep in mind that K_{sp} refers to a saturated solution. To initiate precipitation, [Ag⁺] must exceed concentration in the saturated solution in each case.

79

O McGraw Hill LLO

Example 16.11 3 **Solution** The solubility equilibrium for AgBr is $AgBr(s) \leftrightarrow Ag^+(aq) + Br^-(aq) \quad K_{sp} = [Ag^+][Br^-]$ Because $[Br^-] = 0.020 M$, the concentration of Ag^+ that must be exceeded to initiate the precipitation of AgBr is $[Ag^+] = \frac{K_{sp}}{[Br^-]} = \frac{7.7 \times 10^{-13}}{0.020}$ $= 3.9 \times 10^{-11} M$ Thus, $[Ag^+] > 3.9 \times 10^{-11} M$ is required to start the precipitation of AgBr.

Example 16.11 4

The solubility equilibrium for AgCl is

 $\operatorname{AgCl}(s) \leftrightarrow \operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq) \qquad \qquad K_{sp} = \left[\operatorname{Ag}^{+}\right] \left[\operatorname{Cl}^{-}\right]$

so that

$$\left[Ag^{+} \right] = \frac{K_{sp}}{\left[Cl^{-} \right]} = \frac{1.6 \times 10^{-10}}{0.020}$$

= 8.0 × 10⁻⁹ M

Therefore $\left[Ag^{+} \right] > 8.0 \times 10^{-9} M$

is needed to initiate the precipitation of AgCl. To precipitate the Br⁻ ions as AgBr without precipitating the Cl^- ions as AgCl, then, $[Ag^+]$ must be greater than $3.9 \times 10^{-11} M$ and lower than $8.0 \times 10^{-9} M$.

81

© McGraw Hill LLC

the Common Ion Effect and Solubility of the salt.

Example 16.12 1

Calculate the solubility of silver chloride (in g/L) in a $6.5 \times 10^{-3} M$ silver nitrate solution.

83

C McGraw Hill LLO

Example 16.12 ²

Strategy

This is a common-ion problem. The common ion here is Ag^+ , which is supplied by both AgCl and AgNO₃. Remember that the presence of the common ion will affect only the solubility of AgCl (in g/L), but not the K_{sp} value because it is an equilibrium constant.

84

© McGraw Hill LLC

Example 16.12 5

Because AgCl is quite insoluble and the presence of Ag⁺ ions from AgNO₃ further lowers the solubility of AgCl, *s* must be very small compared with 6.5×10^{-3} . Therefore, applying the approximation $6.5 \times 10^{-3} + s \approx 6.5 \times 10^{-3}$, we obtain

$$1.6 \times 10^{-10} = (6.5 \times 10^{-3}) s$$
$$s = 2.5 \times 10^{-8} M$$

Step 4: At equilibrium

$$\left[\operatorname{Ag}^{+}\right] = \left(6.5 \times 10^{-3} + 2.5 \times 10^{-8}\right) M \approx 6.5 \times 10^{-3} M$$
$$\left[\operatorname{Cl}^{-}\right] = 2.5 \times 10^{-8} M$$

87

O McGraw Hill LL

Example 16.12 7

Check

The solubility of AgCl in pure water is 1.9×10^{-3} g/L (see the Practice Exercise in Example 16.9). Therefore, the lower solubility $(3.6 \times 10^{-6} \text{ g/L})$ in the presence of AgNO₃ is reasonable. You should also be able to predict the lower solubility using LeChâtelier's principle. Adding Ag⁺ ions shifts the equilibrium to the left, thus decreasing the solubility of AgCl.

89

O McGraw Hill LL

Example 16.13 1

Which of the following compounds will be more soluble in acidic solution than in water:

a) CuS

b) AgCl

c) PbSO₄

91

C McGraw Hill LLC

Example 16.13 ²

Strategy

In each case, write the dissociation reaction of the salt into its cation and anion. The cation will not interact with the H^+ ion because they both bear positive charges. The anion will act as a proton acceptor only if it is the conjugate base of a weak acid. How would the removal of the anion affect the solubility of the salt?

92

© McGraw Hill LLC

Example 16.13 3

Solution

a) The solubility equilibrium for CuS is

 $\operatorname{CuS}(s) \leftrightarrow \operatorname{Cu}^{2+}(aq) + \operatorname{S}^{2-}(aq)$

The sulfide ion is the conjugate base of the weak acid $\rm HS^-.$ Therefore, the $\rm S^{2-}$ ion reacts with the $\rm H^+$ ion as follows:

 $S^{2^{-}}(aq) + H^{+}(aq) \rightarrow HS^{-}(aq)$

This reaction removes the S^{2-} ions from solution. According to Le Châtelier's principle, the equilibrium will shift to the right to replace some of the S^{2-} ions that were removed, thereby increasing the solubility of CuS.

93

O McGraw Hill LLC

Example 16.13 5

c) The solubility equilibrium for PbSO₄ is

 $PbSO_4(s) \leftrightarrow Pb^{2+}(aq) + SO_4^{2-}(aq)$

The sulfate ion is a weak base because it is the conjugate base of the weak acid ${\rm HSO}_4^-.$

Therefore, the ion reacts with the H⁺ ion as follows:

$$\mathrm{SO}_{4}^{2-}(aq) + \mathrm{H}^{+}(aq) \rightarrow \mathrm{HSO}_{4}^{-}(aq)$$

This reaction removes the SO_4^{2-} ions from solution. According to Le Châtelier's principle, the equilibrium will shift to the right to replace some of the SO_4^{2-} ions that were removed, thereby increasing the solubility of PbSO₄.

95

© McGraw Hill LLC

Example 16.14 2

Strategy

For iron(II) hydroxide to precipitate from solution, the product $[Fe^{2^+}][OH^-]^2$ must be greater than its K_{sp} . First, we calculate $[OH^-]$ from the known $[Fe^{2^+}]$ and the K_{sp}

value listed in Table 16.2. This is the concentration of OH^- in a saturated solution of $Fe(OH)_2$. Next, we calculate the concentration of NH_3 that will supply this concentration of OH^- ions. Finally, any NH_3 concentration greater than the calculated value will initiate the precipitation of $Fe(OH)_2$ because the solution will become supersaturated.

97

O McGraw Hill LL

Example 16.14 3

Solution

Ammonia reacts with water to produce OH^- ions, which then react with Fe^{2+} to form $Fe(OH)_2$. The equilibria of interest are

 $NH_{3}(aq) + H_{2}O(l) \leftrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$ $Fe^{2+}(aq) + 2OH^{-}(aq) \leftrightarrow Fe(OH)_{2}(s)$

First we find the OH^- concentration above which $Fe(OH)_2$ begins to precipitate. We write

$$K_{\rm sp} = \left[{\rm Fe}^{2+} \right] \left[{\rm OH}^{-} \right]^2 = 1.6 \times 10^{-14}$$

98

© McGraw Hill LLC

Example 16.14 4

Because FeCl_2 is a strong electrolyte, $[\text{Fe}^{2-}] = 0.0030 M$ and

$$\left[OH^{-}\right]^{2} = \frac{1.6 \times 10^{-14}}{0.0030} = 5.3 \times 10^{-12}$$
$$\left[OH^{-}\right] = 2.3 \times 10^{-6} M$$

Next, we calculate the concentration of NH₃ that will supply $2.3 \times 10^{-6} M \text{ OH}^-$ ions. Let *x* be the initial concentration of NH₃ in mol/L.

99

© McGraw Hill LLC

]	Example 16	.14 5		
We summarize the ch from the ionization of	anges in concentr f NH3 as follows.	ations resulti	ng	
N	$H_3(aq) + H_2O(l)$	$) \leftrightarrow \mathrm{NH}_{4}^{+}(a)$	q)+OH ⁻ (aq)
Initial (M):	x	0.00	0.00	
Change (M):	-2.3×10^{-6}	$+2.3 \times 10^{-6}$	$+2.3 \times 10^{-6}$	
Equilibrium (M)	$(x-2.3 \times 10^{-6})$	2.3×10^{-6}	2.3×10^{-6}	
Substituting the equil expression for the ion	ibrium concentrat ization constant (ions in the see Table 15.	4),	
feGraw Hill LLC	Access the text alternative for slide in	1842 <u>5.</u>		

Table 16.4 Form	ation Constants of Selected Complex Ion	is in Water at 25°C
Complex Ion	Equilibrium Expression	Formation Constant (K _f
Ag(NH ₃) ⁺ ₂	$Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$	1.5×10^{7}
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \implies Ag(CN)_2^-$	1.0×10^{21}
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \implies Cu(CN)_4^{2-}$	1.0×10^{25}
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \implies Cu(NH_3)_4^{2+}$	5.0×10^{13}
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^{-} \implies Cd(CN)_4^{2-}$	7.1×10^{16}
CdI_4^{2-}	$Cd^{2+} + 4I^- \implies CdI_4^{2-}$	2.0×10^{6}
$HgCl_4^{2-}$	$\mathrm{Hg}^{2+} + 4\mathrm{Cl}^- \implies \mathrm{Hg}\mathrm{Cl}_4^{2-}$	1.7×10^{16}
HgI ₄ ²⁻	$Hg^{2+} + 4I^- \implies HgI_4^{2-}$	2.0×10^{30}
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^- \implies Hg(CN)_4^{2-}$	2.5×10^{41}
Co(NH ₃) ₆ ³⁺	$Co^{3+} + 6NH_3 \implies Co(NH_3)_6^{3+}$	5.0×10^{31}
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \implies Zn(NH_3)_4^{2+}$	2.9×10^{9}

Strategy

The addition of \mbox{CuSO}_4 to the \mbox{NH}_3 solution results in complex ion formation

 $\operatorname{Cu}^{2+}(aq) + 4\operatorname{NH}_{3}(aq) \leftrightarrow \operatorname{Cu}(\operatorname{NH}_{3})_{4}^{2+}(aq)$

From Table 16.4 we see that the formation constant (K_r) for this reaction is very large; therefore, the reaction lies mostly to the right. At equilibrium, the concentration of Cu²⁺ will be very small. As a good approximation, we can assume that essentially all the dissolved Cu²⁺ ions end up as Cu(NH₃)₄²⁺ ions. How many moles of NH₃ will react with 0.20 mole of Cu²⁺? How many moles of Cu(NH₃)₄²⁺ will be produced? A very small amount of Cu²⁺ will be present at equilibrium. Set up the K_r expression for the preceding equilibrium to solve for [Cu²⁺].

105

© McGraw Hill LLO

Solving for x and keeping in mind that the volume of the solution is 1 L, we obtain

$$x = \left[Cu^{2+} \right] = 1.6 \times 10^{-13} M$$

Check

The small value of $\left[Cu^{2+} \right]$ at equilibrium, compared with 0.20 *M*, certainly justifies our approximation

107

© McGraw Hill LLC

Example 16.16 ²

Strategy

AgCl is only slightly soluble in water

 $\operatorname{AgCl}(s) \leftrightarrow \operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq)$

The Ag⁺ ions form a complex ion with NH₃ (see Table 16.4)

$$\operatorname{Ag}^{+}(aq) + 2\operatorname{NH}_{3}(aq) \leftrightarrow \operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+}$$

Combining these two equilibria will give the overall equilibrium for the process.

109

O McGraw Hill LLO

Example 16.16 4

The equilibrium constant for the overall reaction is the product of the equilibrium constants of the individual reactions (see Section 14.2):

$$K = K_{sp}K_{f} = \frac{\left[Ag(NH_{3})_{2}^{+}\right]\left[Cl^{-}\right]}{\left[NH_{3}\right]^{2}}$$
$$= (1.6 \times 10^{-10})(1.5 \times 10^{7})$$
$$= 2.4 \times 10^{-3}$$

111

O McGraw Hill LL

Chemistry In Action: How an Eggshell is Formed

Cations					
Table 16 E Separation of Cations into Groups According to Their Precipitation Reactions					
Group	with Various Reagents				
	cation .	Treespiceting Reagents	instrusic Compound	R _{sp}	
1	Ag* 11-2+	HCI	AgCI Ha Cl	1.6×10^{-18}	
	ng ₂ ph ²⁺		ng ₂ Cl ₂	3.3×10^{-4}	
2	Bi3+	↓ H.S	PDCI2 Bi-S	1.6×10^{-72}	
2	Cd ²⁺	in acidic	CdS	8.0 × 10 ⁻²⁸	
	Cu ²⁺	solutions	CuS	6.0×10^{-37}	
	Hg ²⁺		HgS	4.0×10^{-54}	
	Sn ²⁺		SnS	1.0×10^{-26}	
3	A1 ³⁺	H-S	Al(OH) ₃	1.8×10^{-33}	
	Co ²⁺	in basic	CoS	4.0×10^{-21}	
	Cr ³⁺	solutions	Cr(OH) ₃	3.0×10^{-29}	
	Fe ²⁺	1	FeS	6.0×10^{-19}	
	Mn ²⁺		MnS	3.0×10^{-14}	
	Ni ²⁺		NiS	1.4×10^{-24}	
	Zn ²⁺	Ļ	ZnS	3.0×10^{-23}	
4	Ba ²⁺	Na ₂ CO ₃	BaCO ₃	8.1×10^{-9}	
	Ca ²⁺		CaCO ₃	8.7×10^{-9}	
	Sr ²⁺	Ļ	SrCO ₃	1.6×10^{-9}	
5	K ⁺	No precipitating	None		
	Na ⁺	reagent	None		
	NH ⁺		None		

