

		Ι	Review			
Ato M	mic number (Z) ass number (A)	= number of j = number of j = atomic num	protons in nucle protons + number nber (Z) + numb	us er of neutrons er of neutrons		
A	Mass Number $\rightarrow A \atop A$ X atomic Number $\rightarrow Z$	← Eleme	nt Symbol			
	proton	neutron	electron	positron	α particle	
	$^{1}_{1}$ p or $^{1}_{1}$ H	1_0 n	$_{-1}^{0}e \text{ or } _{-1}^{0}eta$	$_{+1}^{0}e \text{ or } _{+1}^{0}\beta$	4_2 He or ${}^4_2\alpha$	
Α	1	1	0	0	4	
Z	1	0	-1	+1	2	
© McGraw Hill I	TC	Access the to	xt alternative for slide images.			2

Comparing Nuclear and Chemical Equations

 Table 19.1 Comparison of Chemical Reactions and Nuclear Reactions

	Chemical Reactions		Nuclear Reactions
1.	Atoms are rearranged by the breaking and forming of chemical bonds.	1.	Elements (or isotopes of the same elements) are converted from one to another.
2.	Only electrons in atomic or molecular orbitals are involved in the breaking and forming of bonds.	2.	Protons, neutrons, electrons, and other elementary particles may be involved.
3.	Reactions are accompanied by absorption or release of relatively small amounts of energy.	3.	Reactions are accompanied by absorption or release of tremendous amounts of energy.
4.	Rates of reaction are influenced by temperature, pressure, concentration, and catalysts.	4.	Rates of reaction normally are not affected by temperature, pressure, and catalysts.

Example 19.1

Balance the following nuclear equations (that is, identify the product X):

- (a) $^{212}_{84}$ Po $\rightarrow ^{208}_{82}$ Pb + X
- (b) $^{137}_{55}$ Cs $\rightarrow ^{137}_{56}$ Ba + X

5

O McGraw Hill LL

Example 19.1 2

Strategy

In balancing nuclear equations, note that the sum of atomic numbers and that of mass numbers must match on both sides of the equation.

Solution

a) The mass number and atomic number are 212 and 84, respectively, on the left-hand side and 208 and 82, respectively, on the right-hand side. Thus, X must have a mass number of 4 and an atomic number of 2, which means that it is an α particle. The balanced equation is

$$^{212}_{84}$$
Po $\rightarrow ^{208}_{82}$ Pb + $^4_2\alpha$

6

Example 19.1 3

b) In this case, the mass number is the same on both sides of the equation, but the atomic number of the product is 1 more than that of the reactant. Thus, X must have a mass number of 0 and an atomic number of -1, which means that it is a β particle. The only way this change can come about is to have a neutron in the Cs nucleus transformed into a proton and an electron; that is, ${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}\beta$

(note that this process does not alter the mass number). Thus, the balanced equation is

$$^{137}_{55}$$
Cs $\rightarrow {}^{137}_{56}$ Ba + ${}^{0}_{-1}\beta$

7

O McGraw Hill LLC

Example 19.1 4

Check

Note that the equation in (a) and (b) are balanced for nuclear particles but not for electrical charges. To balance the charges, we would need to add two electrons on the right-hand side of (a) and express barium as a cation (Ba^+) in (b).

8

Nuclear Stability

Certain numbers of neutrons and protons are extra stable

- n or p = 2, 8, 20, 50, 82 and 126
- Like extra stable numbers of electrons in noble gases $(e^- = 2, 10, 18, 54, \text{and } 86)$

Nuclei with even numbers of both protons and neutrons are more stable than those with odd numbers of neutrons and protons

All isotopes of the elements with atomic numbers higher than 83 are radioactive

All isotopes of Tc and Pm are radioactive

9

O McGraw Hill LLC

Stable Isotopes Table 19.2 Number of Stable Isotopes with Even and Odd Numbers of Protons and Neutrons Protons Neutrons Number of Stable Isotopes Odd Odd 4 Odd Even 50 Odd 53 Even Even Even 164 © McGraw Hill LLC

Success binding energy is the energy required to break up a nucleus into its component protons and neutrons. Nuclear binding energy $+ {}^{19}_{9}F \rightarrow 9 {}^{1}_{1}p + 10 {}^{1}_{0}n$ $E = (\Delta m) c^2$ $9 \times (p mass) + 10 \times (n mass) = 19.15708 amu$ $\Delta m = 18.9984 amu - 19.15708 amu$ $\Delta m = -0.1587 amu$ $\Delta E = -0.1587 amu \times (3.00 \times 10^8 m/s)^2 = -1.43 \times 10^{16} amu m^2/s^2$ Using conversion factors: $1 kg = 6.022 \times 10^{26} amu$ $1J = kg m^2/s^2$ $\Delta E = -2.37 \times 10^{-11}J$

Example 19.2 1

The atomic mass of ${}^{127}_{53}$ I is 126.9004 amu. Calculate the nuclear binding energy of this nucleus and the corresponding nuclear binding per nucleon.

17

O McGraw Hill LLO

Example 19.2 $_{2}$

Strategy

To calculate the nuclear binding energy, we first determine the difference between the mass of the nucleus and the mass of all the protons and neutrons, which gives us the mass defect. Next, we apply Equation $(19.2) \left[\Delta E = (\Delta m) c^2 \right]$.

Solution

There are 53 protons and 74 neutrons in the iodine nucleus. The mass of 53 $^{1}_{1}$ H atom is

 53×1.007825 amu = 53.41473 amu

```
The mass of 74 neutrons is
```

74 ×1.008665 amu = 74.64121 amu

18

Example 19.2 3

Therefore, the predicted mass for ${}^{123}_{57}$ I is 53.41473 + 74.64121 = 128.05594 amu, and the mass defect is

 $\Delta m = 126.9004 \text{ amu} - 128.05594 \text{ amu}$ = - 1.1555 amu

The energy released is

$$\Delta E = (\Delta m) c^{2}$$

= (-1.1555 amu) (3.00 × 10⁸ m/s)²
= -1.04 × 10¹⁷ amu m²/s²

19

O McGraw Hill LL

Example 19.2 4 Let's convert to a more familiar energy unit of joules. Recall that $1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$. Therefore, we need to convert amu to kg: $\Delta E = -1.04 \times 10^{17} \quad \frac{\text{armu} \cdot \text{m}^2}{\text{s}^2} \times \frac{1.00 \text{ g/}}{6.022 \times 10^{23} \text{ armu}} \times \frac{1 \text{ kg}}{1000 \text{ g/}}$ $= -1.73 \times 10^{-10} \quad \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} = -1.73 \times 10^{-10} \text{ J}$ Thus the nuclear binding energy is 1.73×10^{10} J. The nuclear binding energy per nucleon is obtained as follows: $= \frac{1.73 \times 10^{-10} \text{ J}}{127 \text{ nucleons}} = 1.36 \times 10^{-12} \text{ J/ nucleon}$

20

O McGraw Hill LL

22

1/8/23

Table 19.6	The Transuranium	Elements	
Atomic Number	Name	Symbol	Preparation
93	Neptunium	Np	$^{238}_{92}U + ^{1}_{0}n \longrightarrow ^{239}_{91}Np + ^{0}_{-1}\beta$
94	Plutonium	Pu	$^{239}_{93}Np \longrightarrow ^{239}_{94}Pu + ^{0}_{-1}\beta$
95	Americium	Am	$^{239}_{94}Pu + ^{1}_{0}n \longrightarrow ^{240}_{95}Am + ^{0}_{-1}\beta$
96	Curium	Cm	$^{239}_{94}Pu + ^4_{3\alpha} \longrightarrow ^{242}_{96}Cm + ^1_{0}n$
97	Berkelium	Bk	$^{241}_{93}Am + \frac{4}{2}\alpha \longrightarrow ^{243}_{97}Bk + 2^{1}_{0}n$
98	Californium	Cf	${}^{242}_{96}Cm + {}^{4}_{2}\alpha \longrightarrow {}^{245}_{96}Cf + {}^{1}_{0}n$
99	Einsteinium	Es	$^{238}_{92}U + 15^1_0n \longrightarrow ^{253}_{99}Es + 7^{-0}_{-1}\beta$
100	Fermium	Fm	$^{238}_{92}U + 17^1_0n \longrightarrow ^{255}_{100}Fm + 8^{-0}_{-1}\beta$
101	Mendelevium	Md	$^{253}_{99}Es + ^4_2\alpha \longrightarrow ^{256}_{101}Md + ^1_0n$
102	Nobelium	No	$^{246}_{96}Cm + ^{12}_{6}C \longrightarrow ^{254}_{102}No + 4^{1}_{0}n$
103	Lawrencium	Lr	$^{252}_{99}Cf + ^{10}_{5}B \longrightarrow ^{257}_{103}Lr + 5^{1}_{0}n$
104	Rutherfordium	Rf	${}^{249}_{98}Cf + {}^{12}_{6}C \longrightarrow {}^{257}_{104}Rf + 4{}^{1}_{0}n$
105	Dubnium	Db	$^{249}_{98}Cf + ^{15}_{7N} \longrightarrow ^{269}_{105}Db + 4^{1}_{0}n$
106	Seaborgium	Sg	$^{249}_{98}Cf + ^{18}_{8}O \longrightarrow ^{263}_{106}Sg + 4^{1}_{0}n$
107	Bohrium	Bh	$^{209}_{83}Bi + ^{54}_{24}Cr \longrightarrow ^{262}_{107}Bh + ^{1}_{0}n$
108	Hassium	Hs	$^{208}_{82}Pb + ^{58}_{26}Fe \longrightarrow ^{265}_{108}Hs + ^{1}_{0}n$
109	Meitnerium	Mt	$^{209}_{83}\text{Bi} + ^{58}_{26}\text{Fe} \longrightarrow ^{266}_{109}\text{Mt} + ^{1}_{0}\text{n}$
110	Darmstadtium	Ds	$^{208}_{82}Pb + ^{62}_{28}Ni \longrightarrow ^{209}_{110}Ds + ^{1}_{0}n$
111	Roentgenium	Rg	$^{209}_{83}\text{Bi} + ^{64}_{28}\text{Ni} \longrightarrow ^{272}_{111}\text{Rg} + ^{1}_{0}\text{n}$
112	Copernicium	Cn	$^{208}_{82}Pb + ^{70}_{30}Zn \longrightarrow ^{277}_{112}Cn + ^{1}_{0}n$
113	Nihonium	Nh	$^{228}_{115}Mc \longrightarrow ^{284}_{113}Nh + ^4_2\alpha$
114	Flerovium	FI	$^{244}_{94}Pu + ^{48}_{20}Ca \longrightarrow ^{299}_{114}Fl + 3^1_0n$
115	Moscovium	Mc	$^{243}_{95}Am + ^{48}_{20}Ca \longrightarrow ^{288}_{115}Mc + 3^1_0r$
116	Livermorium	Lv	$^{248}_{96}Cm + ^{48}_{20}Ca \longrightarrow ^{293}_{116}Lv + 3^{1}_{0}n$
117	Tennessine	Ts	$^{249}_{97}Bk + ^{48}_{20}Ca \longrightarrow ^{297}_{117}Ts + 4^{1}_{0}n$
118	Oganesson	Og	$^{249}Cf + ^{49}Ca \longrightarrow ^{294}Og + 3^{1}n$

1/8/23

Example 19.3 2

To write the balanced nuclear equation, remember that the first isotope ${}_{26}^{56}$ Fe is the reactant and the second isotope ${}_{25}^{54}$ Mn is the product. The first symbol in parentheses (d) is the bombarding particle and the second symbol in parentheses (α) is the particle emitted as a result of nuclear transmutation.

27

C McGraw Hill LLO

Example 19.3 3

Solution

The abbreviation tells us that when iron-56 is bombarded with a deuterium nucleus, it produces the manganese-54 nucleus plus an α particle. Thus, the equation for this reaction is

$${}^{56}_{26}\text{Fe} + {}^{2}_{1}\text{H} \rightarrow {}^{4}_{2}\alpha + {}^{54}_{25}\text{Mn}$$

Check

Make sure that the sum of mass numbers and the sum of atomic numbers are the same on both sides of the equation.

28

Nuclear Binding Energies

Table 19.5 Nuclear Binding Energies of 235 U and Its Fission Products

	Nuclear Binding Energy
²³⁵ U	2.83×10^{-10} J
⁹⁰ Sr	$1.23 \times 10^{-10} \text{ J}$
¹⁴³ Xe	$1.92 \times 10^{-10} \text{ J}$

Access the text alternative for slide in

31

C McGraw Hill LLO

Schematic of an Atomic Bomb

34

1/8/23

Chemistry In Action: Nature's Own Fission Reactor

		1
ble 19	.6 Some R	adioactive Isotopes Used in Medicine
Isotope	Half-Life	Uses
¹⁸ F	1.8 h	Brain imaging, bone scan
²⁴ Na	1.5 h	Monitoring blood circulation
${}^{32}P$	14.3 d	Location of ocular, brain, and skin tumors
43 K	22.4 h	Myocardial scan
⁴⁷ Ca	4.5 d	Study of calcium metabolism
⁵¹ Cr	27.8 d	Determination of red blood cell volume,
		spleen imaging, placenta localization
⁶⁰ Co	5.3 yr	Sterilization of medical equipment, cancer treatment
99mTc	6 h	Imaging of various organs, bones, placenta location
¹²⁵ I	60 d	Study of pancreatic function, thyroid imaging, liver function
131 _T	8 d	Brain imaging, liver function, thyroid activity

B101	ogical Effects	of Radiation
	Radiation absorbed dose	(rad)
	1 rad = 1×10^{-5} J/g of m	naterial
	Roentgen equivalent for	man (rem)
	1 rem = 1 rad \times Q	Quality Factor
Table 19.7 Average Ye	early Radiation Doses	γ- ray = 1
for Americans		$\beta = 1$
tor Americans Source	Dose (mrem/yr)*	$\beta = 1$
tor Americans Source Cosmic rays	Dose (mrem/yr)*	$\beta = 1$ $\alpha = 20$
tor Americans Source Cosmic rays Ground and surroundings	Dose (mrem/yr)* 20-50 25	$\beta = 1$ $\alpha = 20$
for Americans Source Cosmic rays Ground and surroundings Human body [†]	Dose (mrem/yr)* 20-50 25 26	$\beta = 1$ $\alpha = 20$
Source Cosmic rays Ground and surroundings Human body [†] Medical and dental X rays	Dose (mrem/yr)* 20-50 25 26 50-75	$\beta = 1$ $\alpha = 20$
for Americans Source Cosmic rays Ground and surroundings Human body [†] Medical and dental X rays Air travel	Dose (mrem/yr)* 20-50 25 26 50-75 5	$\beta = 1$ $\alpha = 20$
tor Americans Source Cosmic rays Ground and surroundings Human body [†] Medical and dental X rays Air travel Fallout from weapons tests	Dose (mrem/yr)* 20-50 25 26 50-75 5	$\beta = 1$ $\alpha = 20$
for Americans Source Cosmic rays Ground and surroundings Human body [†] Medical and dental X rays Air travel Fallout from weapons tests Nuclear waste	Dose (mrem/yr)* 20-50 25 26 50-75 5 2	$\beta = 1$ $\alpha = 20$

1/8/23

Dosage	Effect
Low dose (Up to 100 kilorads)	Inhibits sprouting of potatoes, onions, garlies. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables after harvest.
Medium dose (100 to 1000 kilorads)	Delays spoilage of meat, poultry, and fish by killing spoilage microorganism. Reduces salmonella and other food-borne pathogens in meat, fish, and poultry. Extends shell file by delaying modig orwith on stratwortness and some other fruits.
High dose (1000 to 10,000 kilorads)	Sterilizes meat, poultry, fish, and some other foods. Kills microorganisms and insects in spices and seasoning.
*Source: Chemical & Eng	ineering News, May 5 (1986).
	ин иналитта - иналитта - (в2 и мал) STRAWBERRIES -
	MIN - RRADATED - (12 34 MAG) STRAWBERRIES - 15 DAYS STRAKE 347 (44)

