Exam 1A Chem 1142 Spring 2013

Name:_____

MULTIPLE CHOICE. [4	4 pts ea.] Choose	the best respons	se on the scantror	n sheet. [48 pts total.]						
Q1. What angle do the s a) 90°	sp² hybrid orbital b) 109.5°	s make with resp c) 120°	bect to each other d) 180°	e) 90° and 120°						
Q2. How many σ and π bonds are there in a molecule of acetylene: H–C=C–H? a) 3 σ , 1 π b) 3 σ , 2 π c) 2 σ , 3 π d) 2 σ , 2 π e) 0 σ , 3 π										
Q3. Which one of the fo a) CCl ₄	ollowing substand b) Cl ₂	ces would exhibi c) N ₂	t dipole-dipole in d) NCl ₃	termolecular forces? e) CH4						
Q4. At room temperatu a) CO ₂	re, which of the f b) H ₂ O	following compo c) NaCl	ounds has the stro d) CH3CH3	e) CH3Cl						
Q5. The boiling points of a) NH ₃ which has b) NH ₃ which has c) SbH ₃ which ha d) SbH ₃ which ha e) AsH ₃ which ha	s an unexpectedly s an unexpectedly s an unexpectedly s an unexpectedly	y high boiling poi y low boiling point y high boiling po y low boiling point	nt nt int int	end except for						
Q6. What fraction of an a) 1	n atom occupying b) ½	a face position of c) ¹ / ₄	of a cubic lattice i d) 1/6	s part of the unit cell? e) 1/8						
Q7. For a pure substance, ΔH_{fus} is known to be +15.0 kJ/mol. Which of the following is most probably the										
ΔH _{vap} for this substance? a) -15.0 kJ/mol d) +15.0 kJ/mol		b) –45.0 kJ/ma e) +45.0 kJ/ma		c) 0.0 kJ/mol						
Q8. A substance at a ter	nperature greater		temperature is cal							
a) a solid d) a supercritical f	b) a vapor luid e) an hydraulic fluid		c) a rheostatic liquid							
Q9. Which of the follow a) C(graphite)	ving is an exampl b) MgO	e of a covalent n c) P4	etwork solid? d) NaCl	e) I ₂						
Q10. If the pressure of a) increase d) have a higher w	of a gas over a liquid increases, the amount of gas dissolved in the liquid will b) decrease c) remain the same									
Q11. Which of the follo a) pure H ₂ O d) 1 <i>m</i> (NH ₄) ₂ SO	C	the lowest boil b) 1 m C ₆ H ₁₂ O e) 1 m Na ₂ SO ₄ (6(aq)	c) 1 <i>m</i> KCl(aq)						

Q12. Which concentration will change as the temperature of a solution is increased? a) %(w/w) b) molality c) molarity d) morality e) mole-fraction

Short Response.

Show ALL work to receive credit.

Q13. [13 pts.] Describe the geometries of these cubic cells: simple cubic, body-centered cubic, and face-centered cubic. Which of these would give the highest density for the same type of atoms? Explain.

Q14. [14 pts.] The normal boiling point and normal freezing point of sulfur dioxide are -10 °C and -72.7 °C respectively. The triple point is -75.5 °C and 1.65×10^{-3} atm, and its critical point is at 157 °C and 78 atm. On the basis of this information, draw a rough sketch of the phase diagram of SO₂. Be sure to carefully label your diagram.

Q15. [15 pts.] A quantity of 7.480 g of an organic compound is dissolved in water to make 300.0 mL of solution. The solution has an osmotic pressure of 1.43 atm at 27 °C. The analysis of this compound shows it to contain 41.8 % C, 4.7 % H, 37.3 % O, and 16.3 % N. Calculate the molecular formula of the organic compound.

Q16. [10 pts.] Calculate the van't Hoff factor of Na₃PO₄ in a 0.40 *m* aqueous solution whose boiling point is 100.78 °C.

			Perio	odic T	able o	of the	Elem	nents									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	r																18
1																	2
н																	He
1.01	2											13	14	15	16	17	4.00
з Li	Be											5 B	ĉ	Ń	ů	9 F	10
6.94	9.01											D 10.81	12.01	14.01	16.00	F 19.00	Ne 20.18
0.94	9.01											10.01	12.01	14.01	16.00	19.00	20.10
Na	Mg											A	Si	P	S	Ċ	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
			· 	· T				· 1	· 1					1		т	
	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	^	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	ł	
	**	89	90	91 Do	92	93	94	95	96	97 Dk	98	99	100	101	102		
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
	l	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	ļ	

1 atm = 101,325 Pa = 760 mmHg = 760 torr R = 0.08206 L \cdot atm/mol \cdot K

 $\Delta T_{\rm f} = ik_{\rm f}m$

 $R = 8.314 \text{ J/mol} \cdot \text{K}$ $\Pi = iMRT$

c = kP

 $\Delta T_{\rm b} = ik_{\rm b}m$