Exam 2A Chem 1142 Spring 2013

Name:

MULTIPLE CHOICE. [5 pts ea.] Choose the best response on the scantron sheet. [60 pts total.]

Q1. For the gaseous reaction, $2A \longrightarrow B$ the results of a plot of $\ln[A]$ vs. time is shown below. What conclusion regarding the reaction order may be made?

Q7. The chemical equilibrium: $2A(s) + 3B(g) \rightleftharpoons 4C(g)$ has an equilibrium constant equal to:

a)
$$K_{c} = \frac{[4C]}{[2A][3B]}$$

b) $K_{c} = \frac{[2A][3B]}{[4C]}$
c) $K_{c} = \frac{[C]^{4}}{[A]^{2}[B]^{3}}$
d) $K_{c} = \frac{[C]}{[A][B]}$
e) $K_{c} = \frac{[C]^{4}}{[B]^{3}}$

Q8. For which of the following chemical equilibria would K_c equal K_p ?

- a) $A(g) \rightleftharpoons A(l)$ b) $2A(g) \rightleftharpoons 3B(g)$ c) $2A(s) \rightleftharpoons B(g) + C(s)$ d) $2A(g) + B(s) \rightleftharpoons C(g) + D(g)$ e) $3A(s) \rightleftharpoons C(g)$
- Q9. For the chemical equilibrium: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, which direction would the equilibrium shift if the total reaction volume was decreased?

a) Left b) No-Change c) Right

d) Not enough information given

Q10. For the chemical equilibrium: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, which direction would the equilibrium shift if some NH₃ was removed?

- a) Left b) No-Change c) Right
 - d) Not enough information given
- Q11. How does the addition of a catalyst affect the equilibrium constant?

a) Increases its value b) No change to its value c) Decreases its value

d) Impossible to answer without more information

Q12. If the equilibrium constant increases as the reaction temperature is increased from 10.0 °C to 20.0 °C, then:

- a) temperature is acting as a catalyst
- c) the activation energy is being lowered d) the activation energy is being raised

b) the reaction is exothermic

e) the reaction is endothermic

Short Response.

Show ALL work to receive credit.

Q13. [20 pts.] Consider the reaction

 $X + Y \longrightarrow Z$ These data are obtained at 360 K:

Experiment #	[X] (M)	[Y] (M)	Initial Rate (M/s)
1	0.40	0.60	4.064
2	0.20	0.60	1.016
3	0.40	0.30	0.508

(a) Determine the rate law, and the value of the rate constant.

(b) Determine the initial rate when the concentration of X is 0.30 M and that of Y is 0.40 M.

Q14. [20 pts.] K_p for the reaction: I₂(g) \rightleftharpoons 2I(g) is 0.10 at a temperature of 203 °C. Imagine you started with a mixture of I₂(g) and I(g) with partial pressures of 1.00 atm and 1.00 atm respectively. Calculate the total pressure of the system when it reached equilibrium.

	Periodic Table of the Elements																
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	
1																	2
H																	He
1.01	2	T										13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
																, T	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	1	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

 $R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ (L atm)/(mol} \cdot \text{K})$

$$k = \mathcal{A} e^{-Ea/RT}$$
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\ln k = (-E_a/R)(1/T) + \ln A$$

$$\underline{\bullet 1 \text{-order}}: \ln[A]_{t} = -kt + \ln[A]_{0} \qquad \ln\left(\frac{[A]_{t}}{[A]_{0}}\right) = -kt \qquad t_{1/2} = 0.693 \ / \ k$$

$$\underline{\bullet 2 \text{-order}}: 1/[A]_{t} = kt + 1/[A]_{0} \qquad t_{1/2} = 1 \ / \ ([A]_{0} \cdot k) \qquad K_{p} = K_{c}(RT)^{\text{ang}}$$

Given: $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$