Exam 3 Chem 1142 Spring 2015

Name:_____

MULTIPLE CHOICE. [3 pts ea.] Choose the best response on the scantron sheet. [45 pts total.]

Q1.	The conjugate base of HPO_4^{2-} is: a) H_3PO_4 b) $H_2PO_4^{-}$ c) HPO_4^{2-} d) PO_4^{3-} e) OH^{-}									
Q2.	An aqueous solution concentration?	on at 25 °C has a l	hydronium ion concentration of 2.4×10^{-8} M. What is the hydroxid							
	a) 2.4×10^{-8} M d) 4.2×10^{-7} M		b) 7.6×10^{-6} M e) 2.4×10^{6} M		c) $1.0 \times 10^{-7} \mathrm{M}$					
Q3.	Which of the follo a) HNO ₂	owing is NOT a st b) H2SO4	rong acid? c) HClO4	d) HI	e) HBr					
Q4.	A 0.10 M weak mo a) 1.8×10^{-4}	onoprotic acid un b) 0.042	dergoes 4.2 % diss c) 0.0042	sociation in water. d) 1.8×10^{-3}	What is K_a for the acid? e) 5.1×10^{-5}					
Q5.	CH ₃ NH ₂ is a weak base. Which chemical equation corresponds to the K_b reaction for CH ₃ NH ₂ ? a) CH ₃ NH ₂ (aq) + OH ⁻ (aq) \Rightarrow CH ₃ NH ₃ ⁺ (aq) + O ²⁻ (aq) b) CH ₃ NH ₂ (aq) + H ₂ O(l) \Rightarrow CH ₃ NH ₃ ⁺ (aq) + OH ⁻ (aq) c) CH ₃ NH ₃ ⁺ (aq) + H ₂ O(l) \Rightarrow CH ₃ NH ₂ (aq) + H ₃ O ⁺ (aq) d) CH ₃ NH ₂ (s) \Rightarrow CH ₂ (aq) + NH ₃ (aq) e) CH NH (ag) \Rightarrow H O ⁺ (ag) \Rightarrow CH NH ⁺ (ag) \Rightarrow H O(l)									
Q6.	An example of an basic salt would be: a) NaNO ₃ b) NH ₄ Br c) LiF d) Fe(ClO ₄) ₃ e) KCl									
Q7.	A Lewis ACID is a a) A substance tha c) A substance tha e) A substance tha	defined as: t forms H ₃ O ⁺ in v t is easily oxidized t can accept electr	vater	b) A substance that donates protons d) A substance with a low pH						
Q8.	A few drops of concentrated HCl is added to a solution containing a mixture of HNO3 and NaNO3. The resultant pH change would be:a) A small decrease in pHb) A small increase in pHc) A large decrease in pHd) A large increase in pHe) A neutral pH would result									
Q9.	Which of the follo a) HF, $K_a = 7.2 \times$ d) HBrO, $K_a = 2.0$	owing weak acids o 10 ⁻⁴) × 10 ⁻⁹	could possibly be t b) C ₆ H ₅ CO ₂ H, e) H ₃ BO ₃ , K _a =	used to prepare a $K_{a} = 6.5 \times 10^{-5}$ 5.8 × 10 ⁻¹⁰	buffer with a pH of 7.50? c) HClO, $K_a = 3.5 \times 10^{-8}$					
Q10.	0. K_{sp} for lead(II) fluoride is 4.1×10^{-8} at 25 °C. Its molar solubility is: a) 0.0022 M b) 0.0028 M c) 2.0×10^{-4} M d) 3.5×10^{-3} M e) 6.7×10^{-5} M									

- Q11. If Q_{sp} for a ionic compound in solution is less than K_{sp} , we will observe:
 - a) Precipitation, and a solution that is unsaturated
 - b) Precipitation, and a solution that is saturated
 - c) No precipitate, but a saturated solution
 - d) No precipitate, and an unsaturated solution
 - e) No precipitate, but a supersaturated solution that will eventually precipitate
- Q12. Given the following pH titration curve:

1 • 1	• 1	1 1	· 1·		11	•	. 1	•	1
which	n acid	l-hase	indi	cator	would	01Ve 119	the most	precise e	nd-noint?
winci	i acie	i Duse	mai	cutor	nould	i Sire us	the most	precise e	na pome.
						0		1	

	Table 17.1 So	me Common A	Acid-Base Indicators					
			Color					
	Indicator	In Acid	In Base	pH Range*				
	Thymol blue	Red	Yellow	1.2–2.8				
	Bromophenol blue	Yellow	Bluish purple	3.0-4.6				
	Methyl orange	Orange	Yellow	3.1-4.4				
	Methyl red	Red	Yellow	4.2-6.3				
	Chlorophenol blue	Yellow	Red	4.8-6.4				
	Bromothymol blue	Yellow	Blue	6.0–7.6				
	Cresol red	Yellow	Red	7.2-8.8				
	Phenolphthalein	Colorless	Reddish pink	8.3-10.0				
	a) Thymol blue d) Bromothymol blu	e (b) Methyl red e) Phenolphthalein	c) Chlorophe	c) Chlorophenol blue			
Q13.	The pH of a 0.10 M solution of Sr(OH) ₂ (aq) at 25 °C is: a) 0.70 b) 1.00 c) 7.00 d) 13.00 e) 13.30							
Q14.	The molar solubility a) pure water d) saturated NaCl(ac	of CaCO3(s) we l	ould be GREATEST in wl b) 0.10 M HNO3(aq) e) 0.10 M KCl(aq)	nich of the following so c) 0.10 M Ca	olutions? (NO ₃) ₂ (aq			
Q15.	For a triprotic weak a) $K_{a1} < K_{a2} < K_{a3}$ d) $K_{a1} > K_{a2} \approx K_{a3}$	acid:	b) $K_{a1} > K_{a2} > K_{a3}$ c) $K_{a1} \approx K_{a2} \approx K_{a3}$	c) <i>K</i> _a	c) $K_{a1} \approx K_{a2} > H$			

Short Response.

Show ALL work to receive credit.

- Q16. [15 pts.] 25 mL of 0.100 M HF(aq) is poured into a beaker containing 15 mL of 0.100 M NaF(aq). The solution is stirred. The temperature is 25 °C. K_a (HF) = 7.1 × 10⁻⁴.
 - i) What is the pH of this solution?

ii) 1.00 mL of 0.10 M HNO3(aq) is added to this solution. Calculate the new pH.

Q17. [10 pts.] 55 mL of 0.020 M Pb(NO₃)₂(aq) is mixed with 35 mL of 0.0050 M LiF(aq). Predict whether a precipitate will form. K_{sp} (PbF₂) = 4.1 × 10⁻⁸.

Q18. [10 pts.] The solubility of Ag₃PO₄ in 0.0010 M Na₃PO₄(aq) is 1.5×10^{-5} M. Calculate K_{sp} for silver phosphate.

Q19. [10 pts.] Calculate the pH of 0.40 M CH₃NH₃⁺Cl⁻(aq), given K_b (CH₃NH₂) = 4.4 × 10⁻⁴ at 25 °C.

Q20. [3 pts.] Calculate the pH of the following solutions at 25 °C: Be sure to show your work!

a) 0.25 M NaOH(aq)

b) 0.42 M Sr(OH)₂(aq)

c) 12 M HCl(aq)

Q21. [7 pts.] i) Write out the chemical equation for the reaction corresponding to K_w .

ii) Set up an ICE-Chart for this reaction, and solve for the equilibrium concentrations of products at 25 °C.

iii) If K_w is equal to 2.4×10^{-14} at 37 °C (body temperature), what will the pH be for a **NEUTRAL** solution of water at this temperature?

BONUS Question:

Give an example of an: i) Acidic salt

ii) Basic salt

iii) Neutral salt

			Perio	odic T	able of	of the	Elem	ients									
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
,	1															(78
L L																	<u> </u>
																	пе
1.01	2	r										13	14	15	16	17	4.00
2	- 1 - I											2	ŝ		-	2	10
	ве											в	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	\$5.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	48	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	67.62	88.91	91.22	92.91	95.94	[96]	101.07	102.91	106.42	107.67	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Ōs	Ir	Pt	Au	Ha	т	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sa	Bh	Hs	Mt									
(223)	12201	(2021	(2011	12621	1200	[264]	[205]	12601	120191	12721	12771		[205]		(2)(9)		(29/1)
head	les-4	head	hered.	level	head	head.	head	head	head	he of	Per 1		head		head		head
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	*	La	Če	Pr	Nd	Pm	Ŝm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Pa	U U	Nn	Pu	Δm	Cm	Bk	Cf	Fs	Em	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	12471	[247]	[251]	[252]	[257]	[258]	[259]		

 $N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$

 $R = 8.3145 \frac{\text{J}}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$

$$M_1V_1 = M_2V_2$$

 $pH = -log_{10}[H^+]$ pH + pOH = 14.00 (25 °C)

 $K_{\rm w} = 1.0 \times 10^{-14} (25 \text{ °C}) \qquad K_{\rm a} \cdot K_{\rm b} = K_{\rm w}$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

$$K_{p} = K_{c}(RT)^{a^{n_{g}}}$$

Given: $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$