Chemistry 1142 Spring 2013 Exam 3a

Name:

Take a deep breath, and relax! First, answer the questions you know how to do and then work on the more difficult problems. Don't forget to show all your work, so I can give you as much credit as possible.

Good Luck!

Andy

Show all work to receive credit. Be sure to include units, and express answers to the correct number of significant figures / decimal places.

Q1. [10 pts.] Calculate the pH of the following aqueous solutions at 25 °C. Show *all* work to receive credit!

a) 4.2 x 10⁻³ M HNO₃

b) 2.9 x 10⁻⁴ M KOH

c) 4.5 x 10⁻⁵ M Sr(OH)₂

Q2. [12 pts.] State the Arrhenius, Brønsted, and Lewis definitions of an acid and a base:

Theory	Acid	Base
Arrhenius		
Brønsted		
Lewis		

Q3. [10 pts.] Predict whether the following salts are acidic, basic, or neutral:

a) NaBr

b) LiF

c) KNO₂

d) $\operatorname{Fe(NO_3)_2}$

e) NaCH₃CO₂

Q4. [10 pts.] Write the chemical reactions corresponding to K_{a1} and K_{a2} for carbonic acid, H₂CO₃.

Q5. [15 pts.] Barbituric acid, $HC_4H_3N_2O_3$, is used to prepare various barbiturate drugs (used as sedatives). Calculate the concentrations of hydronium ion and barbiturate ion in a 0.25 M solution of the acid. The value of K_a is 9.8 x 10⁻⁵.

Q6. [5 pts.] Which of the following diagrams represents a snapshot of a very small portion of a beaker containing a weak acid, HA, dissolved in water? (Circle the best response.)

 $HA(l) + H_2O(l) - H_3O^+(aq) + A^-(aq)$

Note that the solvent molecules (i.e., H₂O) are not shown for clarity.

Q7. [12 pts.] Calculate the molar solubility of silver carbonate in an aqueous solution of 0.10 M sodium carbonate. $K_{sp}(Ag_2CO_3) = 8.1 \times 10^{-12}$.

Q8. [12 pts.] Solutions of lead(II) nitrate and sodium iodide are mixed together in a test-tube. Upon mixing, $[Pb^{2+}] = 2.4 \times 10^{-3} \text{ M}$ and $[I^-] = 1.8 \times 10^{-2} \text{ M}$. Will a precipitate of lead(II) iodide form? $K_{sp}(PbI_2) = 1.4 \times 10^{-8}$. Show all work.

Q9. [14pts.] A buffer is prepared by adding 45.0 mL of 0.18 M NaF to 35.0 mL of 0.12 M HF. What is the pH of the final solution? K_a for HF is 6.8 x 10⁻⁴.

BONUS Questions. Circle the best response:

Q. Given three separate solutions containing equal concentrations of formic acid ($K_a = 1.7 \ge 10^{-4}$), phenol ($K_a = 1.3 \ge 10^{-10}$), and acetic acid ($K_a = 1.8 \ge 10^{-5}$), select the response below that has the acids arranged in order of increasing percent dissociation at equilibrium.

a) formic < phenol < acetic	b) formic < acetic < phenol	c) acetic < formic < phenol
d) phenol < acetic < formic	e) No response is correct.	

Q. Why is it necessary to take the acid-base properties of water into account when computing the hydronium ion concentration of very dilute solutions of strong acids?

- a) The hydroxide ion produced from the dissociation of water reacts with most of the hydronium ion produced from the acid.
- b) The dissociation constant for water is larger in dilute rather than in concentrated solutions of acids.
- c) The acids do not dissociate completely in dilute solutions.
- d) The amount of hydronium ion produced by the dissociation of water is significant compared to that produced by the acid.
- e) The conjugate base of the strong acid reacts with the hydroxide ion produced from the dissociation of water.

Q. Given the following pH titration curve, which acid-base indicator should be used to determine the end-point?

Indicator	In Acid	In Base	pH Range ^a		
Thymol blue	Red	Yellow	1.2-2.8		
Bromophenol blue	Yellow	Bluish purple	3.0-4.6		
Methyl orange	Orange	Yellow	3.1-4.4		
Methyl red	Red	Yellow	4.2-6.3		
Chlorophenol blue	Yellow	Red	4.8-6.4		
Bromothymol blue	Yellow	Blue	6.0-7.6		
Cresol red	Yellow	Red	7.2-8.8		
Phenolphthalein	Colorless	Reddish pink	8.3-10.0		

*The pH range is defined as the range over which the indicator changes from the acid color to the base color

a) Thymol blue b) Methyl orange

```
c) Bromothymol blue d) Phenolphthalein
```

Useful Information

	Periodic Table of the Elements																
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	_																18
1																	2
H																	He
1.01	2	_										13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	1	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		