Exam 4C Chem 1142 Spring 2015

Name:

MULTIPLE CHOICE. [3 pts ea.] Choose the best response on the scantron sheet. [66 pts total.]

- Q1. The second law of thermodynamics states:
 - a) The entropy of the universe is always decreasing
 - b) The energy of the universe is a constant
 - c) The entropy of a perfect crystalline substance at absolute zero is 0
 - d) The entropy of the universe is always increasing
 - e) The free energy change for a spontaneous process is positive
- Q2. The following substance is likely to have the *lowest* entropy at 25 °C: a) $H_2O(l)$ b) $H_2(g)$ c) $F_2(g)$ d) $C_6H_{12}O_6(s)$ e) Na(s)
- $\begin{array}{ll} Q3. & \mbox{Which of the following processes is likely to have $\Delta S > 0$?} \\ & \mbox{a)} \ H_2O(l) \rightarrow H_2O(s) & \mbox{b)} \ N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g) \\ & \mbox{c)} \ CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) & \mbox{d)} \ H_2O(g) \rightarrow H_2O(s) \\ & \mbox{e)} \ Na(l) \rightarrow Na(s) \end{array}$
- Q4. A reaction gives off 1500 J of heat at a temperature of 25 °C. What is ΔS_{surr} ? a) +60. J/°C b) -60. J/°C c) +5.0 J/K d) -5.0 J/K e) 0
- Q5. For the Gibbs free energy vs. extent of reaction plot below, points A and B correspond to:

- a) A = spontaneous forwards reaction, B = equilibrium
- b) A = non-spontaneous forward reaction, B = equilibrium
- c) A = spontaneous reverse reaction, B = spontaneous forwards reaction

- d) A = spontaneous reverse reaction, B = spontaneous reverse reaction
- e) A = non-spontaneous forward reaction, B = spontaneous reverse reaction
- Q6.Not only does ΔG tell us whether a reaction is spontaneous or not, it is tells us:a) the maximum amount of heat releasedb) the maximum amount of useful workc) the maximum amount of temperature producede) the maximum value of the equilibrium constant
- Q7. For which of the following reactions would $\Delta G^{\circ} = \Delta G_{f^{\circ}} (\mathrm{NH}_{3}(\mathbf{g}))$? a) $\mathrm{N}_{2}(\mathbf{g}) + 3\mathrm{H}_{2}(\mathbf{g}) \rightarrow 2\mathrm{NH}_{3}(\mathbf{g})$ b) $2\mathrm{NH}_{3}(\mathbf{g}) + 3\mathrm{O}_{2}(\mathbf{g}) \rightarrow \mathrm{N}_{2}(\mathbf{g}) + 6\mathrm{H}_{2}\mathrm{O}(\mathbf{l})$ c) $\mathrm{N}(\mathbf{g}) + 3\mathrm{H}(\mathbf{g}) \rightarrow \mathrm{NH}_{3}(\mathbf{g})$ d) $\frac{1}{2}\mathrm{N}_{2}\mathrm{H}_{6}(\mathbf{g}) \rightarrow \mathrm{NH}_{3}(\mathbf{g})$ e) $\frac{1}{2}\mathrm{N}_{2}(\mathbf{g}) + \frac{3}{2}\mathrm{H}_{2}(\mathbf{g}) \rightarrow \mathrm{NH}_{3}(\mathbf{g})$
- Q8. Which reaction conditions below correspond to a reaction that is *spontaneous* at low temperature:

Conditions	ΔH	ΔS
1.	+ve	+ve
2.	-ve	-ve
3.	+ve	-ve
4.	-ve	+ve

a) 1 only b) 2 only c) 4 only d) 2 and 4 e) 1 and 3

- Q9. At what temperature will a reaction with $\Delta H^\circ = +3.4 \text{ kJ/mol}$ and $\Delta S^\circ = +23 \text{ J/mol}\cdot\text{K}$ become spontaneous? a) It is always spontaneous b) It is always non-spontaneous c) 0.15 K d) 150 K e) 6.8 K
- Q10. A reaction has $\Delta G^{\circ} = -5.0 \text{ kJ/mol}$ at a temperature of 25 °C. The equilibrium constant at this temperature is: a) 2.5 b) 7.5 c) 240 d) 2.8×10^{10} e) 6.3×10^{88}
- Q11. A reaction has $\Delta G^{\circ} = -5.0 \text{ kJ/mol}$ at a temperature of 25 °C. If the reaction is at equilibrium (Q = K), then ΔG is equal to: a) +5.0 kJ/mol b) -5.0 kJ/mol c) 0 kJ/mol d) $\Delta H/T$ e) - $\Delta H/T$
- Q12. A chemical reaction has an equilibrium constant of 12.9 at a temperature of 25 °C. ΔG° for this reaction is:
- a) -6.34 kJ/mol b) +1.9 kJ/mol c) -63 J/mol d) -5.3 J/mol e) +23 J/K
- Q13. Which combination of chemical equations below would give rise to an overall equation with a *large* equilibrium constant?

i) $A + B \rightarrow C$ $\Delta G^{\circ} = +3.0 \text{ kJ/mol}$ ii) $D \rightarrow E + F$ $\Delta G^{\circ} = +12.0 \text{ kJ/mol}$ iii) $G + H \rightarrow I + J \Delta G^{\circ} = -9.0 \text{ kJ/mol}$

a) ii and iii b) i and ii c) i and iii d) i, ii, and iii

e) no combinations of i, ii, and iii will give rise to an overall equation with a large equilibrium constant

- Q14. What's the oxidation number of S in $S_2O_6^{2-}$? a) +2 b) +3 c) +4 d) +5 e) +6
- Q15. In a galvanic cell, electrons flow from: a) anode to cathode b) electrode to solution c) solution to salt-bridge d) cathode to salt-bridge e) cathode to anode

- Q16. The purpose of a salt-bridge in a galvanic cell is:
 - a) to conduct electrons from one solution to the other
 - b) to conduct electrons from the electrodes to the solutions
 - c) to keep the solutions electrically neutral
 - d) to couple with the cell reactions to make them spontaneous
 - e) to prevent the pH of the solutions from changing

Q17. Predict the cell voltage produced in the following galvanic cell:

Pb(s) | Pb²⁺(aq, 1M) || Ag⁺(aq, 1M) | Ag(s) a) 0.67 V b) -0.67 V c) 0.93 V d) +1.47 V e) +1.73 V

Q18. Using the table of standard reduction potentials on the back page, predict which of the following chemical equations will be spontaneous under standard conditions:

i)
$$2Ag + Cu^{2+} \rightarrow Cu + 2Ag^{+}$$

ii) $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$
iii) $2Au + 3Cu^{2+} \rightarrow 3Cu + 2Au^{3+}$

a) i only b) ii only c) iii only d) i and ii only e) ii and iii only

Q19. A reaction with a large and positive value of ΔG° will have:

- a) a positive value of E_{cell} ° as well as a negative equilibrium constant
- b) a positive value of E_{cell} as well as a small equilibrium constant
- c) a positive value of E_{cell} ° as well as a large equilibrium constant
- d) a negative value of E_{cell} as well as a negative equilibrium constant
- e) a negative value of E_{cell} ° as well as a small equilibrium constant
- Q20. The cell $Zn|Zn^{2+}(aq)||Ag^{+}(aq)|Ag(s)$ has a cell voltage under standard conditions of E_{cell} . If the concentration of Ag⁺ ions is reduced to 0.010 M, the cell voltage will become: a) larger b) smaller c) opposite in sign d) no change e) impossible to predict
- Q21. An electrochemical cell that consumes electrical energy in order to drive an otherwise non-spontaneous reaction is known as:
 - a) Electrolytic cell b) Voltaic cell c) Battery d) Fuel cell e) Galvanic cell
- Q22. How many moles of electrons flow when a current of 30. Amps flows for 1.0 hour?a) 1.1 molb) 1800 molc) 0.019 mold) 3.1×10^{-4} mole) 30. mol

Short Response. Show ALL work to receive credit.

[9 pts.] Calculate ΔG° , ΔH° , ΔS° , and K for the following reaction at a temperature of -35 °C: Q23.

 $2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$

Substance	ΔH^{o}_{f} (kJ/mol)	S° (J/mol·K)
$N_2(g)$	0	191.5
$O_2(g)$	0	205.0
$N_2O(g)$	81.6	220.0

Q24. [8 pts.] Balance the following redox equation using the half-reaction method:

Se + Cr(OH)₃ \rightarrow Cr + SeO₃²⁻ (BASIC conditions)

Q25. [9 pts.] Calculate E°_{cell} , E_{cell} , and K for the following cell at 25 °C.

Ni(s)|Ni²⁺(aq, 0.10 M)||Cr³⁺(aq, 0.0050 M)|Cr(s)

Hint: be sure to write out the balanced chemical equation before you calculate E_{cell} !

Q26. [8 pts.] Molten Fe₂O₃ is electrolyzed for 24-hours using a current of 1200 A. Predict the mass of Fe formed.

Useful Information

le 19.1	Standard Reduction Potentials at 25°C*							
Half-Re	action	$E^{\circ}(\mathbf{V})$						
$F_2(g) +$	$2e^- \longrightarrow 2F^-(aq)$	+2.87						
$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$								
$\operatorname{Co}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Co}^{2+}(aq)$								
$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$								
$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$								
$\operatorname{Ce}^{4+}(aq) + e^{-} \longrightarrow \operatorname{Ce}^{3+}(aq)$								
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$								
$\operatorname{Au}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Au}(s)$								
$\operatorname{Cl}_2(g) + 2e^- \longrightarrow 2\operatorname{Cl}^-(aq)$								
$\operatorname{Cr}_2\operatorname{O}_7^{2-}(aq) + 14\operatorname{H}^+(aq) + 6e^- \longrightarrow 2\operatorname{Cr}^{3+}(aq) + 7\operatorname{H}_2\operatorname{O}$								
$MnO_2(s) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$								
$O_2(g) +$	$4\mathrm{H}^+(aq) + 4e^- \longrightarrow 2\mathrm{H}_2\mathrm{O}$	+1.23						
$Br_2(l) +$	$2e^- \longrightarrow 2Br^-(aq)$	+1.07						
$NO_3^-(aq)$	$) + 4\mathrm{H}^{+}(aq) + 3e^{-} \longrightarrow \mathrm{NO}(g) + 2\mathrm{H}_{2}\mathrm{O}$	+0.96						
$2Hg^{2+}(a)$	$(q) + 2e^- \longrightarrow Hg_2^{2+}(aq)$	+0.92						
$Hg_2^{2+}(aq$	$(l) + 2e^- \longrightarrow 2Hg(l)$	+0.85						
$Ag^+(aq)$	$+ e^- \longrightarrow Ag(s)$	+0.80						
$Fe^{3+}(aq)$	$) + e^{-} \longrightarrow \mathrm{Fe}^{2+}(aq)$	+0.77						
$O_2(g) +$	$2\mathrm{H}^+(aq) + 2e^- \longrightarrow \mathrm{H}_2\mathrm{O}_2(aq)$	+0.68						
$MnO_4^-(a)$	$(q) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59						
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$								
$O_2(g) +$	$2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40						
$Cu^{2+}(aq$	$) + 2e^- \longrightarrow Cu(s)$	+0.34						
AgCl(s)	$+ e^- \longrightarrow Ag(s) + Cl^-(aq)$	+0.22						
$SO_4^{2-}(aq$	$(aq) + 4H^+(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.20						
$Cu^{2+}(aq$	$e^{-} \longrightarrow Cu^{+}(aq)$	+0.15						
$\operatorname{Sn}^{4+}(aq$	$1) + 2e^- \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13						
$2\mathrm{H}^+(aq)$	$1 + 2e^- \longrightarrow H_2(g)$	0.00						
$Pb^{2+}(aq$	$) + 2e^- \longrightarrow Pb(s)$	-0.13						
$\operatorname{Sn}^{2+}(aq$	$) + 2e^- \longrightarrow \operatorname{Sn}(s)$	-0.14						
$Ni^{2+}(aq)$	$) + 2e^- \longrightarrow \operatorname{Ni}(s)$	-0.25						
$\mathrm{Co}^{2+}(aq$	$) + 2e^- \longrightarrow \mathrm{Co}(s)$	-0.28						
PbSO ₄ (s	$P + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.31						
$Cd^{2+}(aq$	$() + 2e^- \longrightarrow Cd(s)$	-0.40						
$Fe^{2+}(aq)$	$) + 2e^- \longrightarrow \mathrm{Fe}(s)$	-0.44						
$Cr^{3+}(aq)$	$) + 3e^- \longrightarrow Cr(s)$	-0.74						
$Zn^{2+}(aq$	$) + 2e^- \longrightarrow Zn(s)$	-0.76						
$2H_{2}O +$	$2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83						
$Mn^{2+}(aq$	$q) + 2e^- \longrightarrow \mathrm{Mn}(s)$	-1.18						
$Al^{3+}(aq)$	$) + 3e^- \longrightarrow Al(s)$	-1.66						
$Be^{2+}(aq$	$) + 2e^- \longrightarrow \operatorname{Be}(s)$	-1.85						
$Mg^{2+}(aa)$	$q) + 2e^- \longrightarrow Mg(s)$	-2.37						
$Na^+(aq)$	$+ e^- \longrightarrow \operatorname{Na}(s)$	-2.71						
$Ca^{2+}(aq$	$) + 2e^- \longrightarrow Ca(s)$	-2.87						
$\operatorname{Sr}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sr}(s)$								
$\operatorname{Ba}^{2+}(aq$	$) + 2e^- \longrightarrow Ba(s)$	-2.90						
$\mathbf{K}^+(aq)$	$+ e^- \longrightarrow \mathbf{K}(s)$	-2.93						
$Li^+(aq)$	$+ e^- \longrightarrow \text{Li}(s)$	-3.05						

Useful Information

 $N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$ Given: $ax^2 + bx + c$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $K_{\rm w} = [H_3O^+][OH^-] = 1.0 \text{ x } 10^{-14} \text{ at } 25 \text{ °C}.$ $pH = -log[H_3O^+]$ pH + pOH = 14.00 (at 25 °C) $K_{\rm a}K_{\rm b} = K_{\rm w}$ $R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ $pH = pK_a + log \frac{[Base]}{[Acid]}$ $M_1V_1 = M_2V_2$ $E_{\rm cell}^{o} = \frac{RT}{nF} \ln K$ $\Delta G^{\rm o} = -nFE^{\rm o}_{\rm cell}$ $\Delta G = -nFE_{\text{cell}}$ $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q$ $E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}}$ $F = 96,500 \text{ C/mol e}^{-1}$ 1 V = 1 J/C $R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $\Delta G = \Delta H - T \Delta S$ $Q(\text{charge}) = I \cdot t$ $\Delta S_{\rm surr} = q_{\rm surr}/T$ $\Delta G = \Delta G^{\circ} + RT \ln Q \qquad \Delta G^{\circ} = -RT \ln K$

	Periodic Table of the Elements																
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	Ŧ																18
1																	2
н																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sq	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
																	••
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	ĺ	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		