Exam 3A Chem 1142 Spring 2017

Name:

MULTIPLE CHOICE. [3 pts ea.] Record the best response on the scantron sheet. [45 pts total.]

Assume all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.

- Q1. Which version of the exam do you have? a) 3A
 - b) 3B
- Q2. For the chemical equilibrium:

 $\begin{array}{l} HCOOH(aq) + HCO_{3}^{-}(aq) \rightleftharpoons H_{2}CO_{3}(aq) + HCOO^{-}(aq)\\ a \ conjugate \ acid-base \ pair \ would \ be:\\ a) \ HCOOH \ \& \ H_{2}CO_{3}\\ b) \ HCOOH \ \& \ HCO_{3}^{-}\\ c) \ HCOOH \ \& \ HCOO^{-}\\ d) \ H_{2}CO_{3} \ \& \ HCOOH \end{array}$

Q3. What is the concentration of $[OH^{-}]$ in a solution which has $[H^{+}] = 2.5 \times 10^{-10} \text{ M}$? a) $2.5 \times 10^{-10} \text{ M}$ b) $3.0 \times 10^{-5} \text{ M}$ c) $1.6 \times 10^{-5} \text{ M}$ d) $4.0 \times 10^{-5} \text{ M}$

Q4. What is the pH of a solution with $[OH^{-}] = 1.4 \times 10^{-9} \text{ M}$?

- a) 8.85
- b) 5.15
- c) 1.40
- d) 9.95

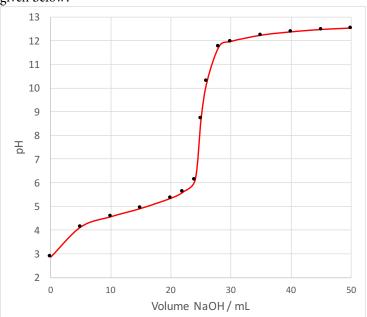
Q5. What is the pOH of $0.30 \text{ M Ba}(\text{OH})_2(\text{aq})$?

- a) 0.52
- b) 1.52
- c) 0.22
- d) 0.60
- Q6. Which of the following acids will have the <u>lowest</u> pH at a concentration of 0.10 M? **HF**, $K_a = 7.1 \times 10^{-4}$ **HCO₂H**, $K_a = 1.7 \times 10^{-4}$ **CH₃CO₂H**, $K_a = 1.8 \times 10^{-5}$
 - a) HF
 - b) HCO₂H
 - c) CH₃CO₂H
 - d) All three acids will have the same pH

- Q7. The base dissociation constant (K_b) for CH₃NH₂ is 4.4×10^{-4} . Which of the following is the correct conjugate acid and its K_a ?
 - $K_{\rm a} = 2.3 \times 10^{-4}$ a) CH₃NH⁺ b) CH₃NH⁺ $K_{\rm a} = 2.3 \times 10^{-11}$ $K_a = 2.3 \times 10^{-4}$ c) $CH_3NH_3^+$ $K_{\rm a} = 2.3 \times 10^{-11}$ d) $CH_3NH_3^+$
- Q8. Predict which of the following salts will be acidic: a) AlCl₃ b) KNO₃ c) $Ba(C_2H_3O_2)_2$
 - d) LiNO₂
- Q9. A Lewis acid is a(n):
 - a) H⁺ donor b) electron acceptor c) OH⁻ ion producer d) reducing agent

- Q10. Formic acid, HCOOH, can form a buffer when combined with: a) HCOOLi b) H₂CO₃
 - c) NH_3
 - d) CH₃COONa
- Q11. What pH is required to ensure the ratio of $[NH_3]/[NH_4^+]$ is 100? Note: $K_a (NH_4^+) = 1.8 \times 10^{-5}$?
 - a) 3.74
 - b) 6.74
 - c) 9.74
 - d) 10.74
- Q12. Which is the correct mathematical expression for K_{sp} (Mg₃(PO₄)₂)? a) $[Mg^{2+}][PO_4^{3-}]$

 - b) $[Mg_3^{2+}][2PO_4^{3-}]$ c) $[Mg]^{2}[PO_{4}]^{3}$


 - d) $[Mg^{2+}]^3 [PO_4^{3-}]^2$

Q13. The molar solubility of CaF₂ is 2.2×10^{-4} M. What is K_{sp} equal to? a) 4.3×10^{-11}

- b) 4.8×10^{-8}
- c) 1.1×10^{-11}
- d) 2.2×10^{-4}

Q14. If Q_{sp} for an ionic compound in solution is greater than K_{sp} , what will happen? a) Nothing—the solution is saturated

- b) More solute can dissolve—the solution is un-saturated
- c) Solute will precipitate—the solution is super-saturated
- d) The solution will cool down until $Q_{sp} = K_{sp}$

Q15. What would be the best pH indicator to use in the titration of CH₃CO₂H vs. NaOH? Its titration curve is given below:

The choice of indicators are:

Color

Indicator	In Acid	In Base	pH Range			
Methyl orange	Orange	Yellow	3.1 - 4.4			
Methyl red	Red	Yellow	4.2 - 6.3			
Cresol red	Yellow	Red	6.2 - 8.8			
Alizarin	Yellow	Red	10.1 – 12			

a) Methyl orange

b) Methyl red

c) Cresol red

d) Alizarin

Short Response.

Show ALL work to receive credit.

Q16. [10 pts.] (a) Show how to, and then calculate, the pH of 0.040 M HNO₃(aq).

(b) Show how to, and then calculate, the pH of 0.040 M Ba(OH)₂(aq)

(c) Calculate the concentration of OH⁻ ions in the solution described in part (a).

Q17. [15 pts.] Calculate the pOH and pH of 0.25 M NH₃. K_b (NH₃) = 1.8×10^{-5} . Show all work, including a properly labelled ICE chart, as well as the correct chemical equation for the K_b reaction.

Q18. [15 pts.] (a) Using the Henderson-Hasselbalch equation, calculate the pH of a solution that is 0.50 M in CH₃CO₂H(aq) as well as 0.30 M in CH₃CO₂Na(aq). Note: K_a (CH₃CO₂H) = 1.8 × 10⁻⁵.

(b) Calculate the new pH of 250-mL of the solution described in part (a) to which 5.0 mL of 3.0 M $HNO_3(aq)$ has been added. Comment on your final result. Be sure to show all relevant chemical equations, and clearly show your work using an ICE chart.

Don't hate me because I'm a little buffer.

Q19. [15 pts.] (a) Write out the chemical equation for the reaction corresponding to $K_{sp}(Ag_2SO_4)$.

(b) Using an ICE chart, calculate the molar solubility of silver sulfate (Ag₂SO₄) in water, given that $K_{sp} = 1.4 \times 10^{-5}$.

(c) Calculate the molar solubility of silver sulfate in 1.35 M Na₂SO₄(aq). Be sure to show all relevant chemical equations, and clearly show your work using an ICE chart. Comment on your final result.

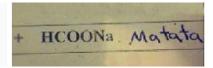
"This is a lovely old song that tells of a young woman who leaves her cottage, and goes off to work. She arrives at her destination, and places some solid NH₄HS in a flask containing 0.50 atm of ammonia, and attempts to determine the pressures of ammonia and hydrogen sulfide when equilibrium is reached."

U seful Information

IA	IIA	Periodic Table of the Elements										IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1																18
н																	2
																	He
1.008	2											13	14	15 7	16	17 9	4.003
												5	6		8		
Li	Ве											В	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I .	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
	Ī	57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.50	164.9	167.3	168.9	173.0		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

 $N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$

 $R = 8.3145 \frac{J}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ $M_1 V_1 = M_2 V_2$


 $pH = -log_{10}[H^+]$ pH + pOH = 14.00 (25 °C)

 $K_{\rm w} = 1.0 \times 10^{-14} \,(25 \,{\rm oC})$ $K_{\rm a} \cdot K_{\rm b} = K_{\rm w}$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

 $K_{\rm p} = K_{\rm c} (RT)^{\Delta_{\rm n_g}}$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

