Exam 4A **Chem 1142 Spring 2017**

Na	me:
MUI	TIPLE CHOICE. [3 pts ea.] Record the best response on the scantron sheet. [45 pts total.]
Assur	ne all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.
Q1.	Which version of the exam do you have? a) 4A b) 4B
Q2.	Which law of thermodynamics states that the entropy of the universe keeps increasing? a) First law b) Second law c) Third law d) Fourth law
Q3.	Which of the following substances would be expected to have the highest entropy at a given temperature? a) $H_2O(s)$ b) $Au(s)$ c) $Hg(l)$ d) $He(g)$
Q4.	Which of the following chemical reactions would likely have a $\Delta S^o \approx 0$? a) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ b) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ c) $CO(g) + H_2(g) \rightarrow CH_2O(g)$ d) $H_2O(g) \rightarrow H_2O(l)$
Q5.	A chemical reaction loses 25 kJ of heat to its surroundings at a temperature of 25 °C. What will the entropy change of the surrounding be? a) -1 kJ/°C b) $+1000 \text{ J/°C}$ c) -84 J/K d) $+84 \text{ J/K}$

a) The reaction is always spontaneous

Q6. An endothermic chemical reaction has $\Delta S_{rxn}^{o} < 0$. What can you say about the spontaneity of this reaction?

- b) The reaction is always non-spontaneous
- c) The reaction is spontaneous at low temperatures, but non-spontaneous at high temperatures
- d) The reaction is non-spontaneous at low temperatures, but spontaneous at high temperatures

- Q7. Which of the following substances will have a Gibbs free energy of formation of zero?
 - a) $H_2(1)$
 - b) CH₄(g)
 - c) C(s, graphite)
 - d) $CO_2(s)$
- Q8. A reaction with a large and negative value of ΔG° will have an equilibrium constant, K, whereby which statement best applies:
 - a) $K \gg 1$
 - b) $K \ll 1$
 - c) K = 1
 - d) K = 0
- Q9. At equilibrium, what can you say about the value of ΔG ?
 - a) $\Delta G = 1$
 - b) $\Delta G > 0$
 - c) $\Delta G = 0$
 - d) $\Delta G \gg 1$
- Q10. The oxidation number of chromium in $Cr_2O_7^{2-}$ is:
 - a) + 8
 - b) +7
 - c) + 6
 - d) + 5
- Q11. Which of the following is **not** a redox reaction?
 - a) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
 - b) $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
 - c) $PCl_3(1) + Cl_2(g) \rightarrow PCl_5(1)$
 - d) $KCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + KNO_3(aq)$
- Q12. Oxidation takes place at which part of a galvanic cell?
 - a) Salt bridge
 - b) Voltmeter
 - c) Anode
 - d) Cathode
- Q13. Given the following two standard electrode potentials:

$$Ag^+(aq) + e^- \rightarrow Ag(s)$$

$$E^{o} = +0.80 \text{ V}$$

$$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$$

$$E^{o} = -2.37 \text{ V}$$

Which of the following species would be the best **oxidizing** agent?

- a) $Ag^+(aq)$
- b) Ag(s)
- c) $Mg^{2+}(aq)$
- d) Mg(s)

Q14. A spontaneous redox reaction would best be described as having:

a)
$$E^{o}_{cell} > 0$$
, $\Delta G^{o} > 0$

b)
$$E^{o}_{cell} > 0$$
, $\Delta G^{o} < 0$

c)
$$E^{o}_{cell} < 0$$
, $\Delta G^{o} > 0$

d)
$$E^{o}_{cell} < 0$$
, $\Delta G^{o} < 0$

Q15. The charge on 2 moles of electrons is equal to:

b)
$$-2 \times 6.022 \times 10^{23}$$

Short Response.

Show ALL work to receive credit.

Q16. [10 pts.] Given the following chemical equations:

C(s, graphite) + ½
$$O_2(g) \rightarrow CO(g)$$
 $\Delta G^\circ = -137.3 \text{ kJ/mol}$
 $CO(g) + ½ $O_2(g) \rightarrow CO_2(g)$ $\Delta G^\circ = -257.1 \text{ kJ/mol}$$

Calculate the value of the equilibrium constant, *K*, at 25 °C for the reaction:

$$C(s, graphite) + O_2(g) \rightleftharpoons CO_2(g)$$

Be sure to show all work and explain clearly your solution.

Q17. [15 pts.] (a) Show how to, then calculate, $\Delta \emph{G}^{o}$ at 45 °C for the chemical reaction:

$$2CO_2(g) + 3H_2(g) \rightarrow C_2H_6(g) + 2O_2(g)$$

Substance	$\mathrm{CO}_2(\mathbf{g})$	$H_2(g)$	$C_2H_6(g)$	$\mathbf{O}_2(\mathbf{g})$		
$\Delta H_{\rm f}^{\rm o} ({\rm kJ/mol})$	-393.5	0	-84.7			
So (J/mol·K)	213.6	131.0	229.5	205.0		

- (b) Comment on the value you obtained from part (a), and its meaning.
- (c) Explain what will happen to the reaction as the temperature is increased.

Q18. [15 pts.] Balance the following two redox equations using the half-reaction method. Be sure to clearly identify all oxidation numbers in the original skeleton equation.

_{a)}
$$S_2O_3^{2-} + I_2 \rightarrow I^- + S_4O_6^{2-}$$
 (acidic solution)

b)
$$CO + I_2O_5 \rightarrow CO_2 + I_2$$
 (basic solution)

Q19. [15 pts.] Calculate E_{cell} for the following cell diagram:

 $Mg(s)|Mg^{2+}(aq,0.050M)||Ag^{+}(aq,1.5\;M)|Ag(s)$

As part of your answer you should calculate $E^{\rm o}_{\rm cell}$ and also write the overall balanced chemical equation. Assume the cell temperature is 25 °C.

Useful Information

IA 1	IIA	Periodic Table of the Elements										IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1											2					
н																	He
1.008	2											13	14	15	16	17	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											ΑI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
																1	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.50	164.9	167.3	168.9	173.0		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

$$N_{\rm A} = 6.022 \times 10^{23} \, \mathrm{mol^{-1}} \qquad \qquad R = 8.3145 \, \mathrm{J/mol \cdot K} = 0.08206 \, \mathrm{L \cdot atm/mol \cdot K}$$

$$\Delta G = -nFE_{\rm cell} \qquad \qquad \Delta G^{\rm o} = -nFE_{\rm cell} \qquad \qquad \Delta G = \Delta H - T\Delta S$$

$$E_{\rm cell} = E_{\rm cell}^{\rm o} - \frac{RT}{nF} \ln Q \qquad \qquad E_{\rm cell}^{\rm o} = E_{\rm cathode}^{\rm o} - E_{\rm anode}^{\rm o} \qquad F = 96,500 \, \mathrm{C/mol \, e^{-1}} \qquad 1 \, \mathrm{V} = 1 \, \mathrm{J/C}$$

$$\Delta S_{\rm surr} = q_{\rm surr}/T \qquad \qquad \Delta G = \Delta G^{\rm o} + RT \ln Q \qquad \Delta G^{\rm o} = -RT \ln K$$

Partial list of standard electrode potentials:

$$Au^{3+} + 3e^{-} \rightarrow Au$$
 $E^{\circ} = +1.50 \text{ V}$
 $Ag^{+} + e^{-} \rightarrow Ag$ $E^{\circ} = +0.80 \text{ V}$
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{\circ} = +0.34 \text{ V}$
 $Pb^{2+} + 2e^{-} \rightarrow Pb$ $E^{\circ} = -0.13 \text{ V}$
 $Mg^{2+} + 2e^{-} \rightarrow Mg$ $E^{\circ} = -2.37 \text{ V}$
 $Li^{+} + e^{-} \rightarrow Li$ $E^{\circ} = -3.05 \text{ V}$