Exam 3A Chem 1142 Spring 2019

Name:

MULTIPLE CHOICE. [2 pts ea.] Record the best response on the scantron sheet. [40 pts total.]

Assume all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.

- Q1. Bases turn litmus what color?
 - A) blue
 - B) green
 - C) red
 - D) yellow
- Q2. The Arrhenius definition of an acid is: A) they donate H⁺ ions to other molecules
 - B) they form H^+ ions in water
 - C) they accept electron pairs
 - D) they turn litmus red
- Q3. A good example of an Arrhenius base is: A) NH₃ B) LiOH C) CH₃CO₂H D) HCO₃⁻
- Q4. The conjugate acid to HPO_4^{2-} is:
 - A) H_3PO_4 B) $H_2PO_4^-$
 - C) PO₄³⁻
 - D) H_3O^+
- Q5. An example of a strong acid would be: A) HF B) HNO₂
 - C) H_2SO_4
 - D) H_2OO_4
- Q6. At 37 °C, K_w is equal to 5.5 × 10⁻¹⁴. This means the pH of pure water at this temperature will be:
 - A) 7.00
 - B) 5.50
 - C) 13.26
 - D) 6.63

Q7. Which of the following diagrams represents a snapshot of a very small portion of a beaker containing a weak acid, HA, dissolved in water? Note that the solvent molecules (H₂O) are not shown for clarity.

- Q8. Given three separate solutions containing equal concentrations of formic acid ($K_a = 1.7 \times 10^{-4}$), phenol ($K_a = 1.3 \times 10^{-10}$), and acetic acid ($K_a = 1.8 \times 10^{-5}$), select the response below that has the acids arranged in order of *increasing* percent dissociation at equilibrium.
 - A) formic < phenol < acetic
 - B) formic < acetic < phenol
 - C) acetic < formic < phenol
 - D) phenol < acetic < formic
- Q9. If the concentration of hydroxide ion is 1.8×10^{-4} M in an aqueous solution at 25 °C, what is the pH of the solution?
 - A) 2.74
 - B) 3.74
 - C) 9.26
 - D) 10.26
- Q10. Which solution has the largest pOH at 25°C: 0.100 M NaOH(aq), 0.100 M Sr(OH)₂(aq), or 0.100 M HCl(aq)? A) 0.100 M NaOH(aq) B) 0.100 M Sr(OH)₂(aq) C) 0.100 M HCl(aq)
 - D) Impossible to determine
- Q11. What is the pH of 0.25 M LiOH(aq)? A) 0.60
 - B) 1.20
 - C) 10.25
 - D) 13.40
 - , <u>,</u> , ,
- Q12. A Lewis base is a(n):
 - A) electron-pair donor
 - B) proton acceptor
 - C) electron-pair acceptor
 - D) proton donor

- Q13. Which pair of substances will constitute a buffer when found in solution together:
 - A) NaNO₂ / HNO₃
 - B) KCl / HF
 - C) HF / NaF
 - D) NaNO₂ / KNO₂
- Q14. A solution containing 0.30 M HClO(aq) ($K_a = 3.5 \times 10^{-8}$) and 0.25 M of NaClO(aq) would have a pH of: A) 7.46
 - B) 7.38
 - C) 7.54
 - D) 7.31
- Q15. A weak monoprotic acid (HA) has a pK_a of 3.94. If we need to prepare a buffer with a pH of 3.74, then we can say for sure that:
 - A) $[HA] > [A^-]$ B) $[HA] = [A^-] - 0.20 \text{ M}$
 - $\mathbf{D} \left[\mathbf{\Pi} \mathbf{A} \right] = \left[\mathbf{A} \right] \cdot \mathbf{D} \left[\mathbf{\Pi} \mathbf{A} \right] = \left[\mathbf{A} \right] \cdot \mathbf{D} \left[\mathbf{A} \right]$
 - C) $[HA] < [A^-]$
 - D) $[HA] = [A^-] + 0.20 M$
- Q16. Which of the following acids would it be best to use to prepare a buffer with a pH of 4.25? A) HClO₂, $K_a = 1.1 \times 10^{-2}$ B) HNO₂, $K_a = 4.0 \times 10^{-4}$ C) HCH₂O, $K_a = 1.8 \times 10^{-4}$
 - D) H₂CO₃, $K_a = 4.3 \times 10^{-7}$
- Q17. Which chemical equation best corresponds to the K_{sp} reaction for calcium carbonate? A) $CaCO_3(s) \rightleftharpoons Ca^+(aq) + C^{3+}(aq) + 2O^{2-}(g)$ B) $CaCO_3(s) \rightleftharpoons Ca(aq) + CO_3(aq)$ C) $CaCO_3(s) \rightleftharpoons Ca^+(aq) + CO_3^-(aq)$ D) $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$
- Q18. Which substance will have the <u>smallest</u> molar solubility: BaSO₄ ($K_{sp} = 1.07 \times 10^{-10}$), CaSO₄ ($K_{sp} = 7.10 \times 10^{-5}$), or FeS ($K_{sp} = 3.72 \times 10^{-19}$). A) BaSO₄ B) CaSO₄ C) FeS D) Impossible to determine
- Q19. In which solution would ammonium fluoride be the <u>most soluble</u>? A) 0.25 M NH₄Br(aq) B) 0.10 M NH₄Cl(aq) C) 0.50 M LiF(aq) D) 0.35 M KBr(aq)
- Q20. The solubility product constant for magnesium hydroxide, $Mg(OH)_2$ is 2.06×10^{-13} . Which solution would form a precipitate immediately upon mixing?
 - A) A solution containing 1.0×10^{-6} M Mg²⁺ and 1.0×10^{-3} M OH⁻
 - B) A solution containing $1.0\times10^{-5}\,M\,Mg^{2+}$ and $1.0\times10^{-4}\,M\,OH^{-}$
 - C) A solution containing 1.0×10^{-4} M Mg²⁺ and 1.0×10^{-5} M OH⁻
 - D) A solution containing 1.0×10^{-3} M Mg²⁺ and 1.0×10^{-6} M OH⁻

Short Response.

Show ALL work to receive credit.

Q21. [15 pts.] (a) The pH of 0.13 M HF(aq) is 2.01. Use this information to determine K_a for HF. Be sure to write an ICE chart as part of your answer.

(b) Using your calculated K_a , predict the pH of 1.3 M HF(aq).

(c) What is the percent dissociation of HF in part (a) vs. part (b)?

Part (a) _____ % Part (b) _____ %

Q22. [15 pts.] (Be sure to write all relevant chemical equations and ICE/ICF charts for this question.) 250.0 mL of 0.400 M HNO₂(aq), $K_a = 4.0 \times 10^{-4}$, is mixed with 50.0 mL of 0.800 M NaOH(aq).

(a) Calculate the pH of the solution formed.

(b) If 0.010 mol HCl is added to the solution formed in part (a), what will the final pH be?

Q23. [15 pts.] Calculate the molar solubility of aluminum hydroxide in pure water vs. in 0.200 M KOH(aq). Comment on the difference. K_{sp} for Al(OH)₃ is 2.3×10^{-8} .

Be sure to write the K_{sp} chemical equation and an ICE chart as part of your answer! Explain any assumptions you are making.

Q24. [15 pts.] (a) Write out the chemical equation (reaction) corresponding to K_b for CH₃CH₂NH₂(aq), ethylamine.

(b) Write out the chemical equation (reaction) corresponding to K_w .

(c) Without performing a calculation, explain how the pH of $0.100~M~NH_3(aq)$ compares with 0.100~M~LiOH(aq).

(d) Calculate the pH of 12.0 M HCl(aq) (concentrated hydrochloric acid).

Bonus question

Predict whether the following aqueous salts will be acidic, basic, neutral, or whether there is not enough information to decide.

NaF_____ Al(NO₃)₃_____ LiCl____

U seful Information

IA	IIA	Periodic Table of the Elements											IVA	VA	VIA	VIIA	VIIIA
1	_											18					
1																	2
н																	He
1.008	2											13	14	15	16	17	4.003
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sa	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.50	164.9	167.3	168.9	173.0		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

 $N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$

 $R = 8.3145 \frac{\text{J}}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ $M_1 V_1 = M_2 V_2$

 $pH = -log_{10}[H^+]$ pH + pOH = 14.00 (25 °C)

 $K_{\rm w} = 1.0 \times 10^{-14} \,(25 \,{\rm oC})$ $K_{\rm a} \cdot K_{\rm b} = K_{\rm w}$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

Given:
$$ax^{2} + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$