Exam 4A Chem 1142 Spring 2019

Name:

MULTIPLE CHOICE. [2.5 pts ea.] Record the best response on the scantron sheet. [50 pts total.]

Assume all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.

- Q1. The second law of thermodynamics states that:
 - A) The entropy of the reaction always increases
 - B) The entropy of the universe always increases
 - C) The entropy of the surroundings always increases
 - D) The entropy of the system always increases
- Q2. Which substance would we expect to have the greatest molar entropy at 25 °C?
 - A) NaF(s)
 - B) $N_2(g)$
 - $C)\,H_2O(l)$
 - D) C(s, graphite)
- Q3. Which chemical equation would most likely have $\Delta S^{\circ}_{rxn} < 0$? A) CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(g) B) Na(s) + ¹/₂ Br₂(l) \rightarrow NaBr(s) C) H₂(g) + ¹/₂ O₂(g) \rightarrow H₂O(g) D) C(s, graphite) + O₂(g) \rightarrow CO₂(g)
- Q4. A chemical reaction has $\Delta H_{rxn} = -5.00 \text{ kJ}$ at 250 K. What will the entropy change of the **surroundings** be? A) + 20 J/K
 - B) 20 J/K
 - $C) + 1300 \text{ kJ} \cdot K$
 - D) 1300 kJ·K
- Q5. An endothermic reaction has $\Delta S_{rxn} > 0$. What can you say about its spontaneity?
 - A) It will always be spontaneous
 - B) It will always be non-spontaneous
 - C) It will be spontaneous at low temperatures, but non-spontaneous at high temperatures
 - D) It will be non-spontaneous at low temperatures, but spontaneous at high temperatures
- Q6. When will the entropy of a substance be zero?
 - A) When it is an ion at a molar concentration of 1 M
 - B) When it is an element in its standard state at 25 °C
 - C) When it is a substance under 1 atm pressure at its normal melting point
 - D) When it is a perfect crystal at 0 K

- Q7. A chemical reaction has $\Delta G^{\circ} > 0$ and $\Delta G < 0$. This means that:
 - A) It is spontaneous under standard conditions, but non-spontaneous under current conditions
 - B) It is non-spontaneous under standard conditions, but spontaneous under current conditions
 - C) It will always be non-spontaneous under any condition
 - D) It will always be spontaneous under any condition
- Q8. A chemical reaction with $\Delta G^{\circ} \ll 0$ will likely have an equilibrium constant, *K*, such that:
 - A) $K \gg 1$
 - B) $K \ll 1$
 - C) K = 1
 - D) K = 0
- Q9. Which of the following chemical equations corresponds to the standard Gibbs energy of formation of NH₃(g)?

A) $NH_3(g) + O_2(g) \rightarrow NO_2(g) + \frac{3}{2} H_2(g)$ B) $2NH_3(g) \rightarrow N_2(g) + 3 H_2(g)$ C) $\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \rightarrow NH_3(g)$ D) $NH_2^{-}(aq) + H^+(aq) \rightarrow NH_3(g)$

Q10. Which pair of chemical equations, when coupled (added), give rise to a spontaneous reaction?

(i) $A \rightarrow B$ $\Delta G^{\circ} = -20 \text{ kJ}$ (ii) $B \rightarrow C$ $\Delta G^{\circ} = +25 \text{ kJ}$ (iii) $A \rightarrow C$ $\Delta G^{\circ} = +10 \text{ kJ}$ (iv) $B \rightarrow D$ $\Delta G^{\circ} = -15 \text{ kJ}$

A) (ii) & (iii) B) (ii) & (iv)

- C) (i) & (ii)
- D) (i) & (iii)

Q11. Which of the following half-reactions is properly balanced? A) $Br_2(l) \rightarrow 2Br^-(aq)$ B) $2H^+(aq) + e^- + IO^+(aq) \rightarrow H_2O(l) + \frac{1}{2}I_2(s)$ C) $2e^- + 2Cl^-(aq) \rightarrow Cl_2(g)$ D) $2e^- + H^+(aq) + Pb(OH)_3^+ \rightarrow Pb(OH)_2 + H_2O(l)$

- Q12. Where does reduction take place in a voltaic (galvanic) cell? A) The salt bridge
 - B) The voltmeter
 - C) The cathode
 - D) The anode
- Q13. Given the following two electrode potentials:

 $Cu^{2+} + 2e^{-} \rightarrow Cu \qquad E^{\circ} = +0.34 \text{ V}$ $Zn^{2+} + 2e^{-} \rightarrow Zn \qquad E^{\circ} = -0.76 \text{ V}$ The best reducing agent would be: A) Cu²⁺ B) Cu C) Zn²⁺

D) Zn

- Q14. What is the cell reaction for the voltaic cell:
 - $\begin{array}{l} \mathbf{Cr(s)|Cr^{3+}(aq) || Mg^{2+}(aq)|Mg(s)} \\ \mathrm{A) } 2\mathrm{Cr(s)} + 2\mathrm{Cr^{3+}(aq)} \rightarrow 3\mathrm{Mg^{2+}(aq)} + 3\mathrm{Mg(s)} \\ \mathrm{B) } 2\mathrm{Cr(s)} + 3\mathrm{Mg^{2+}(aq)} \rightarrow 2\mathrm{Cr^{3+}(aq)} + 3\mathrm{Mg(s)} \\ \mathrm{C) } 2\mathrm{Cr^{3+}(aq)} + 3\mathrm{Mg(s)} \rightarrow 2\mathrm{Cr(s)} + 3\mathrm{Mg^{2+}(aq)} \\ \mathrm{D) } 3\mathrm{Mg^{2+}(aq)} + 2\mathrm{Cr^{3+}(aq)} \rightarrow 3\mathrm{Mg(s)} + 2\mathrm{Cr(s)} \end{array}$
- Q15. Which of the following statements is true about a voltaic (galvanic) cell that has an E° value of -0.50 V?

```
(i) The reaction is spontaneous
(ii) K > 1
(iii) ΔG° > 0
```

A) (i) & (ii) B) (iii) only

- C) (ii) & (iii)
- D) (i) only

Q16. How would E_{cell} change if the concentration of Ag⁺(aq) was **increased** in the following voltaic (galvanic) cell?

 $Ag(s)|Ag^{+}(aq)||Au^{3+}(aq)|Au(s)|$

- A) It would increase
- B) It would not change
- C) It would decrease
- D) There is not enough information to decide

Q17. The reaction MgCl₂ \rightarrow Mg + Cl₂ has a cell potential (E_{cell}) of -3.5 V. This means that:

A) The reaction is spontaneous and will produce 3.5 V in a cell

- B) The reaction is non-spontaneous, and will produce 3.5 V in a cell
- C) The reaction can be driven by applying a voltage of > 3.5 V
- D) The reaction is spontaneous, but can be stopped by applying a voltage of < -3.5 V

Q18. How many moles of electrons are produced when 12.0 A flows for 24.0 min?

- A) 288 mol
- B) 5.58 mol
- C) 0.500 mol
- D) 0.179 mol
- Q19. Copper can be plated out of a solution containing Cu^{2+} according to the half-reaction: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

What mass of copper is formed when 15.0 A of current flows for 10.0 min?

- A) 2.96 g
- B) 5.92 g
- C) 8.15 g
- D) 12.6 g
- Q20. Which electrode is assigned a standard electrode potential of 0.00 V?
 - A) The standard hydrogen electrode
 - B) The standard pH electrode
 - C) The standard acidic electrode
 - D) The standard platinum electrode

Short Response.

Show ALL work to receive credit.

Q21. [12 pts.] <u>Using the half-reaction method</u>, balance the following redox reaction that occurs in **basic** solution:

 $Al + NO_3^- \rightarrow Al(OH)_4^- + NH_3$

Be sure to identify oxidation states of each atom as part of your answer. Clearly indicate whether each half-reaction is an oxidation or reduction process.

Q22. [13 pts.] Consider the voltaic cell

 $Zn(s)|Zn^{2+}(aq)||Cr^{3+}(aq)|Cr(s)|$

(i) Write the half-cell reactions and the overall cell reaction.

(ii) Make a sketch of this voltaic cell and label it. At a minimum, be sure to include labels showing the anode, cathode, and direction of electron flow.

(iii) Calculate E°_{cell} .

(iv) What is E_{cell} if $[\text{Zn}^{2+}] = [\text{Cr}^{3+}] = 0.10 \text{ M}$? Assume a temperature of 298 K.

Q23. [12 pts.] For the chemical reaction:

$H_2O(g) + Cl_2(g) \longrightarrow 2HCl(aq) + \frac{1}{2}O_2(g)$

(i) Calculate ΔH° , ΔS° , and ΔG° at 25 °C. (*Hint: be sure to look at the data table at the bottom of this question!*)

(ii) Use this information to calculate the equilibrium constant at 25 °C.

(iii) Predict how the spontaneity of this reaction will change (if at all!) at low vs. high temperature. Be sure to explain your answer!

Substance	$\Delta H_{\rm f^o}({\rm kJ/mol})$	S° (J/mol·K)
$H_2O(g)$	-241.8	188.8
$Cl_2(g)$	0	223.1
HCl(aq)	-167.2	56.5
O ₂ (g)	0	205.2

Q24. [13 pts.] Consider the reaction:

$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

Calculate ΔG_{rxn} at 25 °C under each of the following conditions: (*Hint: be sure to look at the data table at the bottom of this question!*)

i) standard conditions

ii) at equilibrium

iii) under conditions of $p_{\rm CH_3OH}$ = 1.5 atm, and $p_{\rm CO}$ = $p_{\rm H_2}$ = 0.020 atm.

Substance	$\Delta G_{ m f^o}(m kJ/mol)$
CH ₃ OH(g)	-162.3
$H_2(g)$	0
CO(g)	-137.2

Useful Information

1	IIA			Peric	odic T	able o	of the	Elem	ents			IIIA	IVA	VA	VIA	VIIA	VIIIA 18
1																	2
н.																	He
												10		45	10		
1.008	2											13 5	14 6	15 7	16 8	17 9	4.003
Li	Ве											в	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
																	<u> </u>
	Ī	57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.50	164.9	167.3	168.9	173.0		
	-	89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

 $N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$

 $R = 8.3145 \frac{\text{J}}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$

 $M_1V_1 = M_2V_2$

$\Delta G = -nFE_{\rm cell}$	$\Delta G^{\rm o} = -nFE^{\rm o}_{\rm cell}$	$E_{\rm cell}^o = \frac{RT}{nF} \ln K$	
$E_{\rm cell} = E_{\rm cell}^{\rm o} - \frac{RT}{nF} \ln Q$	$E^{\rm o}_{\rm cell} = E^{\rm o}_{\rm cathode} - E^{\rm o}_{\rm anode}$	$F = 96,500 \text{ C/mol e}^-$	1 V = 1 J/C
$R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $\Delta S_{\text{surr}} = q_{\text{surr}}/T$	$Q \text{ (charge)} = I \cdot t$ $\Delta G = \Delta G^{\circ} + RT \ln Q$	$\Delta G = \Delta H - T \Delta S$ $\Delta G^{\circ} = -RT \ln K$	

Standard reduction potentials

		E°(A)
	0.5-()	E°(V)
$F_2(g) + 2 e^-$	→ 2 F ⁻ (aq)	2.87
$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	\rightarrow 2 H ₂ O(<i>I</i>)	1.78
$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$	\longrightarrow PbSO ₄ (s) + 2 H ₂ O(<i>l</i>)	1.69
MnO ₄ ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻	\longrightarrow MnO ₂ (s) + 2 H ₂ O(<i>I</i>)	1.68
MnO ₄ ⁻ (aq) + 8 H ⁺ (aq) + 5 e ⁻	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(l)	1.51
Au ³⁺ (aq) + 3 e ⁻	\longrightarrow Au(s)	1.50
PbO ₂ (s) + 4 H ⁺ (aq) + 2 e ⁻	$\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	1.46
$Cl_2(g) + 2 e^-$	$\longrightarrow 2 \text{ Cl}^{-}(aq)$	1.36
Cr ₂ O ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O(<i>l</i>)	1.33
O ₂ (g) + 4 H ⁺ (aq) + 4 e ⁻	$\longrightarrow 2 H_2O(l)$	1.23
MnO ₂ (s) + 4 H ⁺ (aq) + 2 e ⁻	\longrightarrow Mn ²⁺ (aq) + 2 H ₂ O(l)	1.21
IO ₃ ^{-(aq)} + 6 H ⁺ (aq) + 5 e ⁻	$\longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(l)$	1.20
Br ₂ (<i>l</i>) + 2 e ⁻	→ 2 Br ⁻ (aq)	1.09
$VO_2^+(aq) + 2 H^+(aq) + e^-$	$\longrightarrow VO^{2+}(aq) + H_2O(I)$	1.00
NO ₃ ^{-(aq)} + 4 H ⁺ (aq) + 3 e ⁻	\longrightarrow NO(g) + 2 H ₂ O(<i>l</i>)	0.96
$ClO_2(g) + e^-$	$\longrightarrow CIO_2^{-}(aq)$	0.95
$Ag^+(aq) + e^-$	$\longrightarrow Ag(s)$	0.80
$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (aq)	0.77
O ₂ (g) + 2 H ⁺ (aq) + 2 e ⁻	\longrightarrow H ₂ O ₂ (aq)	0.70
$MnO_4^{-}(aq) + e^{-}$	\longrightarrow MnO ₄ ²⁻ (aq)	0.56
I ₂ (s) + 2 e ⁻	> 2 I [−] (aq)	0.54
$Cu^+(aq) + e^-$	→ Cu(s)	0.52
O ₂ (g) + 2 H ₂ O(l) + 4 e ⁻	\longrightarrow 4 OH ⁻ (aq)	0.40
Cu ²⁺ (aq) + 2 e ⁻	→ Cu(s)	0.34
SO42-(aq) + 4 H+(aq) + 2 e-	\longrightarrow H ₂ SO ₃ (aq) + H ₂ O(<i>l</i>)	0.20
$Cu^{2+}(aq) + e^{-}$	\longrightarrow Cu ⁺ (aq)	0.16
Sn ⁴⁺ (aq) + 2 e ⁻	\longrightarrow Sn ²⁺ (aq)	0.15
2 H ⁺ (aq) + 2 e ⁻	\longrightarrow H ₂ (g)	0
$Fe^{3+}(aq) + 3e^{-}$	\longrightarrow Fe(s)	-0.036
$Pb^{2+}(aq) + 2e^{-}$	→ Pb(s)	-0.13
Sn ²⁺ (aq) + 2 e ⁻	→ Sn(s)	-0.14
$Ni^{2+}(aq) + 2 e^{-}$	\longrightarrow Ni(s)	-0.23
$Cd^{2+}(aq) + 2e^{-}$	\longrightarrow Cd(s)	-0.40
$Fe^{2+}(ag) + 2e^{-}$	→ Fe(s)	-0.45
$Cr^{3+}(aq) + e^{-}$	\rightarrow Cr ²⁺ (aq)	-0.50
$Cr^{3+}(aq) + 3e^{-}$	\rightarrow Cr(s)	-0.73
$Zn^{2+}(aq) + 2e^{-}$	\rightarrow Zn(s)	-0.76
$2 H_2 0(l) + 2 e^-$	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83
$Mn^{2+}(aq) + 2e^{-}$	\rightarrow Mn(s)	-1.18
$Al^{3+}(aq) + 3 e^{-}$	\longrightarrow Al(s)	-1.66
$Mg^{2+}(aq) + 2e^{-}$	\longrightarrow Mg(s)	-2.37
	→ Na(s)	-2.71
$Na^+(aq) + e^-$ $Ca^{2+}(aq) + 2 e^-$	\rightarrow Ca(s)	-2.71
va (ay) ⊤ ∠ e		-2.90
$Ba^{2+}(aa) + 2a^{-}$	\longrightarrow Ba(s)	
Ba ²⁺ (aq) + 2 e ⁻ K ⁺ (aq) + e ⁻	\longrightarrow Ba(s) \longrightarrow K(s)	-2.92