

Most solids have an increased solubility in liquids with increasing temperature, but there are a *few* exceptions!

© 2017 Pearson Education, Inc.

Cold soda pop

Warm soda pop

© 2017 Pearson Education, Inc.

Unlike solids, gases have a *lower* solubility in liquids with increasing temperature! Warm "pop" tastes disgusting in part due to the lower solubility of the carbon dioxide gas (the "fizz").

Ammonia gas (NH₃) has an incredibly large solubility in water, reflected by its large Henry's law constant. This is partially due to the fact that it hydrogen-bonds to water and so the solute-solvent IMFs are so strong (like-dissolves-like).

There's also a second reason for its incredibly large value... but we will have to wait to discuss it when we look at chemical equilibria. If you're curious, drop me an email and I will explain. :)

TABLE 13.4 Henry's Law Constants for Several Gases in Water at 25 °C

Gas	k _H (M/atm)		
0 ₂	1.3×10^{-3}		
N_2	6.1×10^{-4}		
CO ₂	3.4×10^{-2}		
NH_3	5.8×10^{1}		
Не	3.7×10^{-4}		

^{© 2017} Pearson Education, Inc.

	C				
	Expressing solu	(One:			
	- Qualibbio	measures of 10	DM.C	7	
	(no #)	masans of the	one.		
		DILUTE	- low amit	soluti	
		CONCENTRATE	- high "	1.1	•
			•		
71				= _ 2 _ 1	
				_	
					*
				1 7	
			7		
				E -	
			1 × 1		2 / 4
		30 7 1		F	