AGiç ~ similar to AHF can measure: elements -> substance, $\Delta G = \Delta G_f$ std. state conds. △Ginn = [Sinp. △Gif (Prods)] - [Sinr. △Gif (Feach)] ... only downside is these $\Delta 6\hat{g}$'s are $25^{\circ}c$ $(\Delta 6\hat{g} = \Delta H^{\circ} - T\Delta s^{\circ})$ 2^{\prime}_{98K} $2^{\circ}_{25^{\circ}_{c}}$ Pp 865-866 example rale. Summing rxns (Hess's law) ex: Ala + Gly → Ala-Gly AG°=+29KJ H₂O + ATP → ADP + (P) AG°=-31KJ spont (→ Ala+Gly + H₂O + ATP → Ala-Gly + ADP+(P) AG°=-2KJ dipephile spont. coupled you

Example 18.6 Calculating the Standard Change in Free Energy for a Reaction Using $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$

One of the possible initial steps in the formation of acid rain is the oxidation of the pollutant SO_2 to SO_3 by the reaction:

$$SO_2(g) + \frac{1}{2} O_2(g) \longrightarrow SO_3(g)$$

Calculate ΔG°_{rxn} at 25 °C and determine whether the reaction is spontaneous.

Solution

Begin by looking up (in Appendix IIB) the standard enthalpy of formation and the standard entropy for each reactant and product.

Reactant or product	$\Delta H_{\rm f}^{\circ}({ m kJ/mol})$	S°(J/mol · K)
SO ₂ (g)	-296.8	248.2
0 ₂ (g)	0	205.2
SO ₃ (g)	-395.7	256.8

Calculate ΔH°_{rxn} using Equation 6.15.

$$\Delta H_{\rm rxn}^{\circ} = \sum n_{\rm p} \Delta H_{\rm f}^{\circ}({\rm products}) - \sum n_{\rm r} \Delta H_{\rm f}^{\circ}({\rm reactants})$$

= $[\Delta H_{\rm f}^{\circ}, {}_{\rm SO_3(g)}] - [\Delta H_{\rm f}^{\circ}, {}_{\rm SO_2(g)} + \frac{1}{2} (\Delta H_{\rm f}^{\circ}, {}_{\rm O_2(g)})]$
= $-395.7 \text{ kJ} - (-296.8 \text{ kJ} + 0.0 \text{ kJ}) = -98.9 \text{ kJ}$

Example 18.6 Calculating the Standard Change in Free Energy for a Reaction Using $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$

Continued

Calculate ΔS°_{rxn} using Equation 18.10.

$$\Delta S_{\rm rxn}^{\circ} = \sum n_{\rm p} S^{\circ}({\rm products}) - \sum n_{\rm r} S^{\circ}({\rm reactants})$$

= $[S_{\rm SO_3(g)}^{\circ}] - [S_{\rm SO_2(g)}^{\circ} + \frac{1}{2}(S_{\rm O_2(g)}^{\circ})]$
= 256.8 J/K - $[248.2 \text{ J/K} + \frac{1}{2}(205.2 \text{ J/K})] = -94.0 \text{ J/K}$

Calculate ΔG°_{rxn} using the calculated values of ΔH°_{rxn} and ΔS°_{rxn} and Equation 18.11. Convert the temperature to kelvins.

$$T = 25 + 273 = 298 \text{ K}$$

$$\Delta G_{\text{rxn}}^{\circ} = \Delta H_{\text{rxn}}^{\circ} - T\Delta S_{\text{rxn}}^{\circ}$$

$$= -98.9 \times 10^{3} \text{ J} - 298 \text{ K} (-94.0 \text{ J/K})$$

$$= -70.9 \times 10^{3} \text{ J} = -70.9 \text{ kJ}$$

The reaction is spontaneous at this temperature because ΔG°_{rxn} is negative.

Example 18.6 Calculating the Standard Change in Free Energy for a Reaction Using $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$

Continued

For Practice 18.6

Consider the oxidation of NO to NO₂:

 $NO(g) + 12 O_2(g) \longrightarrow NO_2(g)$

Calculate ΔG°_{rxn} at 25 °C and determine whether the reaction is spontaneous at standard conditions.

Example 18.7 Estimating the Standard Change in Free Energy for a Reaction at a Temperature Other Than 25 °C Using $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$

For the reaction in Example 18.6, estimate the value of ΔG°_{rxn} at 125 °C. Is the reaction more or less spontaneous at this elevated temperature; that is, is the value of ΔG°_{rxn} more negative (more spontaneous) or more positive (less spontaneous)?

Solution

Estimate ΔG°_{rxn} at the new temperature using the calculated values of ΔH°_{rxn} and ΔS°_{rxn} from Example 18.6. For T, convert the given temperature to kelvins. Make sure to use the same units for ΔH°_{rxn} and ΔS°_{rxn} (usually joules).

$$T = 125 + 273 = 398 \text{ K}$$

$$\Delta G_{\text{rxn}}^{\circ} = \Delta H_{\text{rxn}}^{\circ} - T\Delta S_{\text{rxn}}^{\circ}$$

$$= -98.9 \times 10^{3} \text{ J} - 398 \text{ K} (-94.0 \text{ J/K})$$

$$= -61.5 \times 10^{3} \text{ J}$$

$$= -61.5 \text{ kJ}$$

Since the value of ΔG°_{rxn} at this elevated temperature is less negative (or more positive) than the value of ΔG°_{rxn} at 25 °C (which is -70.9 kJ), the reaction is less spontaneous.

For Practice 18.7

For the reaction in For Practice 18.6, calculate the value of ΔG°_{rxn} at -55 °C. Is the reaction more spontaneous (more negative ΔG°_{rxn}) or less spontaneous (more positive ΔG°_{rxn}) at the lower temperature?

Chemistry: A Molecular Approach, 4th Edition Nivaldo J. Tro

© 2017 Pearson Education, Inc.

Example 18.8 Calculating ΔG°_{rxn} from Standard Free Energies of Formation

Ozone in the lower atmosphere is a pollutant that can form by the following reaction involving the oxidation of unburned hydrocarbons:

 $CH_4(g) + 8 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(g) + 4 O_3(g)$

Use the standard free energies of formation to determine ΔG°_{rxn} for this reaction at 25 °C.

Solution

Begin by looking up (in Appendix IIB) the standard free energies of formation for each reactant and product. Remember that the standard free energy of formation of a pure element in its standard state is zero.

Reactant or product	$\Delta G_{ m f}^{ m o}$ (in kJ/mol)
$CH_4(g)$	-50.5
0 ₂ (g)	0.0
$CO_2(g)$	-394.4
$H_2O(g)$	-228.6
0 ₃ (g)	163.2

Example 18.8 Calculating ΔG°_{rxn} from Standard Free Energies of Formation

Continued

Calculate ΔG°_{rxn} by substituting into Equation 18.12.

$$\Delta G_{\text{rxn}}^{\circ} = \sum n_{\text{p}} \Delta G_{\text{f}}^{\circ}(\text{products}) - \sum n_{\text{r}} \Delta G_{\text{f}}^{\circ}(\text{reactants})$$

$$= [\Delta G_{\text{f}, \text{CO}_{2}(g)}^{\circ} + 2(\Delta G_{\text{f}, \text{H}_{2}\text{O}(g)}^{\circ}) + 4(\Delta G_{\text{f}, \text{O}_{3}(g)}^{\circ})] - [\Delta G_{\text{f}, \text{CH}_{4}(g)}^{\circ} + 8(\Delta G_{\text{f}, \text{O}_{2}(g)}^{\circ})]$$

$$= [-394.4 \text{ kJ} + 2(-228.6 \text{ kJ}) + 4(163.2 \text{ kJ})] - [-50.5 \text{ kJ} + 8(0.0 \text{ kJ})]$$

$$= -198.8 \text{ kJ} + 50.5 \text{ kJ}$$

$$= -148.3 \text{ kJ}$$

For Practice 18.8

One of the reactions that occurs within a catalytic converter in the exhaust pipe of a car is the simultaneous oxidation of carbon monoxide and reduction of NO (both of which are harmful pollutants):

$$2 \operatorname{CO}(g) + 2 \operatorname{NO}(g) \longrightarrow 2 \operatorname{CO}_2(g) + \operatorname{N}_2(g)$$

Use standard free energies of formation to determine ΔG°_{rxn} for this reaction at 25 °C. Is the reaction spontaneous at Standard conditions?

For More Practice 18.8

In For Practice 18.8, you calculated ΔG°_{rxn} for the simultaneous oxidation of carbon monoxide and reduction of NO using standard free energies of formation. Calculate ΔG°_{rxn} for that reaction again at 25 °C, only this time use $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$. How do the two values compare? Use your results to calculate ΔG°_{rxn} at 500.0 K and explain why you could not calculate ΔG°_{rxn} at 500.0 K using tabulated standard free energies of formation.

Example 18.9 Calculating ΔG°_{rxn} for a Stepwise Reaction

Find ΔG°_{rxn} for the reaction:

 $3 \operatorname{C}(s) + 4 \operatorname{H}_2(g) \longrightarrow \operatorname{C}_3\operatorname{H}_8(g)$

Use the following reactions with known ΔG°_{rxn} values:

$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(g)$	$\Delta G^{\circ}_{rxn} = -2074 \text{ kJ}$
$C(s) + O_2(g) \longrightarrow CO_2(g)$	$\Delta G^{\circ}_{\rm rxn} = -394.4 \text{ kJ}$
$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{H}_2\operatorname{O}(g)$	$\Delta G^{\circ}_{\rm rxn} = -457.1 \text{ k}$

Solution

To work this problem, you need to manipulate the given reactions with known values of ΔG°_{rxn} in such a way as to get the reactants of interest on the left, the products of interest on the right, and other species to cancel.

Since the first reaction has C_3H_8 as a reactant, and the reaction of interest has C_3H_8 as a product, reverse the first reaction and change the sign of ΔG°_{rxn} .

$$3 \operatorname{CO}_2(g) + 4 \operatorname{H}_2\operatorname{O}(g) \longrightarrow \operatorname{C}_3\operatorname{H}_8(g) + 5 \operatorname{O}_2(g)$$
 $\Delta G^{\circ}_{\mathrm{rxn}} = +2074 \text{ kJ}$

The second reaction has C as a reactant and CO₂ as a product, as required in the reaction of interest. However, the coefficient for C is 1, and in the reaction of interest, the coefficient for C is 3. Therefore, multiply this equation and its ΔG°_{rxn} by 3.

$$3 \times [C(s) + O_2(g) \longrightarrow CO_2(g)] \qquad \Delta G^{\circ}_{rxn} = 3 \times (-394.4 \text{ kJ})$$
$$= -1183 \text{ kJ}$$

Chemistry: A Molecular Approach, 4th Edition Nivaldo J. Tro

Example 18.9 Calculating ΔG°_{rxn} for a Stepwise Reaction

Continued

In the third reaction $H_2(g)$ is a reactant, as required. However, the coefficient for H_2 is 2, and in the reaction of interest, the coefficient for H_2 is 4. Multiply this reaction and its ΔG°_{rxn} by 2.

$$2 \times [2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \longrightarrow 2 \operatorname{H}_{2}\operatorname{O}(g)] \qquad \Delta G^{\circ}_{\operatorname{rxn}} = 2 \times (-457.1 \text{ kJ})$$
$$= -914.2$$

Lastly, rewrite the three reactions after multiplying through by the indicated factors and show how they sum to the reaction of interest. ΔG°_{rxn} for the reaction of interest is then the sum of the ΔG 's for the steps.

$3 \cdot \mathrm{CO}_2(g) + 4 \cdot \mathrm{H}_2\mathrm{O}(g) \longrightarrow \mathrm{C}_3\mathrm{H}_8(g) + 5 \cdot \mathrm{O}_2(g)$	$\Delta G_{\rm rxn}^{\circ} = +2074 \rm kJ$
$3 C(s) + 3 \Theta_2(g) \longrightarrow 3 C \Theta_2(g)$	$\Delta G_{\mathrm{rxn}}^{\circ} = -1183 \mathrm{kJ}$
$4 \operatorname{H}_2(g) + 2 \operatorname{O}_2(g) \longrightarrow 4 \operatorname{H}_2 \operatorname{O}(g)$	$\Delta G_{\rm rxn}^{\circ} = -914.2 \rm kJ$
$3 \operatorname{C}(s) + 4 \operatorname{H}_2(g) \longrightarrow \operatorname{C}_3\operatorname{H}_8(g)$	$\Delta G_{\rm rxn}^{\circ} = -23 \rm kJ$

Example 18.9 Calculating ΔG°_{rxn} for a Stepwise Reaction

Continued

For Practice 18.9 Find ΔG°_{rxn} for the reaction:

$$N_2O(g) + NO_2(g) \longrightarrow 3 NO(g)$$

Use the following reactions with known ΔG°_{rxn} values:

$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g)$	$\Delta G^{\circ}_{\rm rxn} = -71.2 \text{ kJ}$
$N_2(g) + O_2(g) \longrightarrow 2 NO(g)$	$\Delta G^{\circ}_{\rm rxn} = +175.2 \text{ kJ}$
$2 \operatorname{N}_2 \mathcal{O}(g) \longrightarrow 2 \operatorname{N}_2(g) + \mathcal{O}_2(g)$	$\Delta G^{\circ}_{\rm rxn} = -207.4 \text{ kJ}$

AGran VS. AGran STD conditions S/2: pure (az): 1M ex: H2O(2) X> H2O(g) ; DGran = +8.59 KJ/mol 25°C 25°C (non-spont) pure lahn Doesn't water enaporate? H2O(2) -> H2O(g) yes ... but water vapor 7 l'atm! vp of H2O @ 25°C < lam. Can calculate DG under non-std. conditions usige! ΔG = ΔG° + RT lnQ B·31455/ temp (K) lower than up. What's AG for: H20(2) -> H20(g, 0.010 ahm) ? 25°C $Q = P_{H_20} = P_{H_20} = 0.010$ ΔG=ΔG°+ RT hQ = +8.59 KJ +8.3145 × 298.15K × ln (0.010) + 103 $\Delta G = +8.59 \frac{k3}{M01} + (-11.4 \frac{13}{M01})$ = - 2.81~J/mol, so ... yes, it's sport! See ex: 18.10, p 872 for another problem ...

Example 18.10 Calculating ΔG°_{rxn} under Nonstandard Conditions

Consider the reaction at 298 K:

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g) \qquad \Delta G^{\circ}_{\operatorname{rxn}} = -71.2 \text{ kJ}$$

Calculate ΔG_{rxn} under these conditions:

$$P_{NO} = 0.100 \text{ atm};$$
 $P_{O_2} = 0.100 \text{ atm};$ $P_{NO_2} = 2.00 \text{ atm}$

Is the reaction more or less spontaneous under these conditions than under standard conditions?

Solution

Use the law of mass action to calculate Q.

$$Q = \frac{(P_{\rm NO_2})^2}{(P_{\rm NO})^2 P_{\rm O_2}} = \frac{(2.00)^2}{(0.100)^2 (0.100)} = 4.00 \times 10^3$$

Substitute Q, T, and ΔG°_{rxn} into Equation 18.13 to calculate ΔG_{rxn} . (Since the units of R include joules, write ΔG°_{rxn} in joules.)

$$\Delta G_{\rm rxn} = \Delta G_{\rm rxn}^{\circ} + RT \ln Q$$

= -71.2 × 10³ J + 8.314 $\frac{J}{\rm mol \cdot K}$ (298 K) ln(4.00 × 10³)
= -71.2 × 10³ J + 20.5 × 10³ J
= -50.7 × 10³ J
= -50.7 kJ

The reaction is spontaneous under these conditions, but less spontaneous than it would be under standard conditions (because ΔG_{rxn} is less negative than ΔG_{rxn}°).

Example 18.10 Calculating ΔG°_{rxn} under Nonstandard Conditions

Continued

Check

The calculated result is consistent with what you would expect based on Le Châtelier's principle; increasing the concentration of the products and decreasing the concentration of the reactants relative to standard conditions should make the reaction less spontaneous than it was under standard conditions.

For Practice 18.10

Consider the reaction at 298 K:

$$2 \operatorname{H}_2 S(g) + \operatorname{SO}_2(g) \longrightarrow 3 \operatorname{S}(s, \operatorname{rhombic}) + 2 \operatorname{H}_2 O(g) \qquad \Delta G^{\circ}_{\operatorname{rxn}} = -102 \operatorname{kJ}$$

Calculate ΔG_{rxn} under these conditions:

 $P_{H_2S} = 2.00 \text{ atm};$ $P_{SO_2} = 1.50 \text{ atm};$ $P_{H_2O} = 0.0100 \text{ atm}$

Is the reaction more or less spontaneous under these conditions than under standard conditions?

Relating A Girm to K AG=AG°+RT ha 6 1 AGKO @ eam, K=Q 16=0 @eam 16>0 AG=0 extent Ream Q<K Q=K Q>K $O = \Delta G^{\circ} + RThK$ => $\Delta G^{\circ} = - RT ln K$ Marrangiz: $ln K = -\Delta G^{\circ} \Rightarrow K = e RT$ RT So, if AG°<O, K>I K~P R P $\Delta G^{\circ} > 0$, K<1 $K \sim \frac{P}{R} = \frac{P}{MOR}$ G 6 eem AGero 15°>0 > extent > extent Small largek

Ala-Gy Mu: AGAM = + 29KJ/mol @ 37°C $-\Delta G^{\circ}/RT$ |K = e $-29,000^{-5}/mol$ $= e^{-11.25}$ $= e^{-11.25}$ = 1.3× 10-5 but, coupled w/ ATP hydrolysii, $\Delta G^{\circ} = -21KJ$ mol million times -2,000 = 7/mol Mor favorable K = C RT = 2.2 Ch 19: Electrochemistry Redor runs: OX (loss ets) e-flow red (gain ets) (diffue in E) ···· electricity .