4/19/2019 Redox rxus. - ox. sptes (chem-1) ~ review how do we balance redor eas? almost always acidic basic Procedure ... environment. Method Example / ±# 1. Determine ox state '(+2) (+7)(-2) (+3) (+2) charge for each atom. ' Fe²⁺(ag) + MuOur(ag) -> Fe³⁺(ag) + Mu²⁺(ag) · (in acid) $(+2) \qquad (+3)$ $Fe^{2+} \xrightarrow{ox} Fe^{3+}$ $(+7) \qquad (+7) \qquad (+7) \qquad (+7) \qquad (+1) \qquad (+1)$ ox # 1 when ox! 2. Separated into . ox#1 when red! 2 - 1×45 (0x-red) . 3. Balance each (Ox) $Fe^{2+} \rightarrow Fe^{3+}$ 2 -new by: a) Coefficients for (red MnOn -> Mn2+ coeff ~ everything except 0, H MnOy -> Mn2+ + 4H20 0 b) O by adding H2O, 8H+ + MnOy -> Mn2+ + 4H2O H~ c) H by adding H+ , 4. Balance charge . (Ox) Fe²⁺ -> Fe³⁺ + e⁻ V by adding es to , (rea) 5e+8H+ MuO+ -> Mu2++4H20 more the side

5. $\times \frac{1}{2}$ mus by small 5 \times (Fe²⁺ \rightarrow Fe³⁺ + e⁻) whole #'s so that (\vee (5e⁺ + 8H⁺+MnO₄ \rightarrow Mn²⁺+4H₂O) we have same He = + 6. Add ± 1×ns + 5Fe²⁺ + 5E+8H⁺ + Mna⁻ = 5Fe³⁺ + 5E + Mn²⁺ + 4H20 cancel out 7. Check its balanced! 8. If we are balancing +804-under basic conditions, +80Hunder basic conditions, add OHT to both sides, to BH20 next Ht: Ht+05-240 4 neut H+: H++OH->H2O final eq: $5Fe^{2+} + 4H_2O + M_nO_{4} \xrightarrow{Se^{-}} 5Fe^{3+} + M_n^{2+} + 80H_n^{-}$ (ag) (1) (ag) (ag) (ag) (ag) (ag) (ag) (ag)

Continu	ed
Step 3	 Balance each half-reaction with respect to mass in the following order: Balance all elements other than H and O. Balance O by adding H₂O. Balance H by adding H⁺.
	All elements are balanced, so proceed to the next step.
Step 4	Balance each half-reaction with respect to charge by adding electrons. (Make the sum of the charges on bot sides of the equation equal by adding as many electrons as necessary.)
	$AI(s) \longrightarrow AI^{3+}(aq) + 3 e^{-}$ 2 e^{-} + Cu ²⁺ (aq) \longrightarrow Cu(s)
Step 5	Make the number of electrons in both half-reactions equal by multiplying one or both half-reactions by a small whole number.
	$2[Al(s) \longrightarrow Al3+(aq) + 3 e^{-1}]$ $2 Al(s) \longrightarrow 2 Al3+(aq) + 6 e^{-1}$ $3[2 e^{-1} + Cu^{2+}(aq) \longrightarrow Cu(s)]$ $6 e^{-1} + 3 Cu^{2+}(aq) \longrightarrow 3 Cu(s)$

Continued	.1 Half-Reac Equations	tion Me in Acie	thod of Bal dic Solution	ancing /	Aqueous Red	ох
Step 6 Add the tv	vo half-reactions togeth	ier, cancelir	ng electrons and oth	er species as	necessary.	
	2 Al(s	$) \longrightarrow 2 \text{ Al}^{3+}$	$(aq) + 6e^{-}$			
	6-e ⁻ +	- 3 Cu ²⁺ (<i>aq</i>)	\longrightarrow 3 Cu(s)			
	$\frac{1}{2 \operatorname{Al}(s)}$	$) + 3 \mathrm{Cu}^{2+}(a)$	$q) \longrightarrow$			
			$2 \operatorname{Al}^{3+}(aq) + 3 \operatorname{Cu}(s)$			
step / verijy ind	i the reaction is balance	<i>ea</i> with resp	lect to both mass an	a charge.		
	Re	actants	Products			
	Re 2 A	actants	Products 2 Al			
	Re 2 A 3 C	actants I	Products 2 Al 3 Cu	-		
	Re 2 A 3 C +6	actants I ru charge	Products 2 Al 3 Cu +6 charge	-		
For Practice 19 Balance the redox r	Re 2 A 3 C +6 9.1 eaction in acidic solution H	actants I u charge on: +(aq) + Cr(s)	Products 2 Al 3 Cu +6 charge $(r) \longrightarrow H_2(g) + Cr^2$	- - *(aq)		

Example 19.2 Half-Reaction Method of Balancing Aqueous Redox Equations in Acidic Solution				queous Redox
Step 7 Verify that the reaction is be	ulanced with respect	to both mass a	nd charge.	
	Reactants	Products		
	5 Fe	5 Fe		
	8 H	8 H		
	1 Mn	1 Mn		
	4 0	4 0		
	+17 charge	+17 charge		
For Practice 19.2 Balance the redox reaction in acidic s	olution:			
	$\operatorname{Cu}(s) + \operatorname{NO}_3(aq) -$	$\longrightarrow Cu^{2+}(aq)$	+ NO ₂ (g)	
mistry: A Molecular Approach. 4th Edition				© 2017 Pearson Education
do J. Tro				w 2017 Pearson Education,

Continu	ed	
Step 4	Balance each half-reaction with respect to charge.	
	$2 I^{-}(aq) \longrightarrow I_{2}(aq) + 2 e^{-}$ 4 H ₂ O(<i>l</i>) + MnO ₄ ⁻ (aq) + 3 e^{-} \longrightarrow MnO_{2}(s) + 2 H ₂ O(<i>l</i>) + 4 OH ⁻ (aq)	
Step 5	Make the number of electrons in both half-reactions equal.	
	$\begin{array}{l} 3[2 \ \Gamma(aq) \longrightarrow I_2(aq) + 2 \ e^-] \\ 6 \ \Gamma(aq) \longrightarrow 3 \ I_2(aq) + 6 \ e^- \\ 2[4 \ H_2O(1) + MnO_4(aq) + 3 \ e^- \longrightarrow MnO_2(s) + 2 \ H_2O(l) + 4 \ OH^-(aq)] \\ 8 \ H_2O(1) + 2 \ MnO_4^-(aq) + 6 \ e^- \longrightarrow 2 \ MnO_2(s) + 4 \ H_2O(l) + 8 \ OH^-(aq) \end{array}$	
Step 6	Add the half-reactions together.	
	$6 I^{-}(aq) \longrightarrow 3 I_{2}(aq) + 6 e^{-}$	
	$48 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{MnO}_4^{-}(aq) + 6 \operatorname{e}^{-} \longrightarrow 2 \operatorname{MnO}_2(s) + 4 \operatorname{H}_2\operatorname{O}(l) + 8 \operatorname{OH}^{-}(aq)$	
	$\overline{6 \Gamma(aq) + 4 \mathrm{H}_2\mathrm{O}(l) + 2 \mathrm{MnO}_4^-(aq) \longrightarrow 3 \mathrm{I}_2(aq) + 2 \mathrm{MnO}_2(s) + 8 \mathrm{OH}^-(aq)}$	
	$\frac{48 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{MnO}_4(aq) + 6 \operatorname{e} \longrightarrow 2 \operatorname{MnO}_2(s) + 4 \operatorname{H}_2\operatorname{O}(l) + 8 \operatorname{OH}(aq)}{6 \operatorname{I}^-(aq) + 4 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{MnO}_4^-(aq) \longrightarrow 3 \operatorname{I}_2(aq) + 2 \operatorname{MnO}_2(s) + 8 \operatorname{OH}^-(aq)}$	

Step 7 Verify that the re	action is balanced		
Step 7 Verify that the re	Reactants	Products	
	61	61	1
	8 H	8 H	~
	2 Mn	2 Mn	-
	12 0	12 0	-
	-8 charge	-8 charge	
For Practice 19.3 Balance the following red	ox reaction occurring in basic	solution:	

Voltaic (Galvanie) Cells - generate eler. from spont. chem exus. (a) $2e^{-}$ (+2) (+2) (b) ex: Zn(s) + Cu²⁺(ag) \longrightarrow Zn²⁺(ag) + Cu(s) ox red if we want to harness es, must separate reacharb! e voltaic cell. wire Cuis) electrodus - measures voltage, V Dotential difference, pol Zn(s) electody NO3 SALT BRIDGE - potential difference, pol - electromotive force, enf KNO3(92) analogy = "wate pressure" Cy2+(ag) Zn2+(ag) Znis) -> Zniagi+2e 2e-+ Cuip) -> Cuisi RC-(OLA REDUCTION OXIDATION CATHODE ANODE salt bridge keeps sol^{Ms} elec. neutral.