1 F = 96,500 c/mol (Faraday) (Ichargel on a mol of e's) AG = charge × voltage (physics) AG = -nF × Ecel (non-sta). // / -ve duage e- cel voltage. △G°=-nFEcel $E_{cell} = -RT lnK$ $E_{cell} = -RT lnK$ $E_{cell} = RT lnK$ AG°=-nFEau/ K AG°=-RThk AG[°] - ve : O : +ve Rosetta stone K : >1 : 1 : <1 Eccel : +ve : O : -ve

Continued			
Solution			
Oxidation (Anode):	$2 \operatorname{Br}^{-}(aq) \longrightarrow \operatorname{Br}_{2}(l) + 2 e^{-}$	$E^\circ = 1.09 \mathrm{V}$	
Reduction (Cathode):	$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	$E^\circ = 0.54 \text{ V}$	
	$I_2(s) + 2 \operatorname{Br}^-(aq) \longrightarrow 2 \operatorname{I}^-(aq) + \operatorname{Br}_2(l)$	$E_{\rm cell}^{\circ} = E_{\rm cat}^{\circ} - E_{\rm an}^{\circ}$	
		$= -0.55 \mathrm{V}$	
mol	$\overline{e^{-}}$ $\left(-0.55 \overline{c} \right)$		
$= +1.1 \times 10^5 \text{J}$ Since ΔG° is positive, th	$e^{-\int_{0}^{0} -0.55} e^{-\int_{0}^{0} -0.5} e^{-\int_{0}^{0} $	idard conditions.	

commute	
Check The answer is in the that values of ΔG° ty for a reaction in whi	correct units (joules) and seems reasonable in magnitude (\approx 110 kJ). You have seen (in Chapter 1 pically range from plus or minus tens to hundreds of kilojoules. The sign is positive, as expected E^{*}_{cell} is negative.
For Practice 19 Use tabulated electro	.6 ode potentials to calculate ΔG° for the reaction.
	$2 \operatorname{Na}(s) + 2 \operatorname{H}_2\operatorname{O}(l) \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^{-}(aq) + 2 \operatorname{Na}^{+}(aq)$
Is the reaction spont	aneous?

Eccel us Eccel AG=-nFE $\Delta G = \Delta G^{\circ} + RThi Q$ $\Delta G^{\circ} = -nFE^{\circ}$ =) -nFE = -nFE°+RTlnQ == nF E=E°-RT. hQ NF NERNSTEQ ex: What's Eccel for: Ag(s) Ag^t(ag, 0.010M) Autog, 2M) Auto Au(s) on monday: Ecell = +0.70V = Eratude - Eanode = EAut/An - Ent/Ag eally to (a) (43) (b) (+1)(b) (+1)(c) (+1(Ag -> As +e-)3 3e+ Au -> Au $E = +0.70V - \frac{8.3145}{100} \frac{1}{100} \times \frac{298.15}{100} \cdot \frac{1}{100}$ $\frac{[A_{g}+]^{3}}{[A_{u}^{3}+]} = 0.010^{3} = 5.0 \times 10^{-6}$ $1V = 1 \frac{3}{c}$ $E = +0.70V - 8.56 \times 10^{-3} = \ln(5.0 \times 10^{-7})$ = +0.70V - -0.12V = +0.82V

Example 19.8 Calculating *E*_{cell} under Nonstandard Conditions

Continued

Check The answer has the correct units (V). The value of E_{cell} is larger than E°_{cell} , as expected based on Le Châtelier's principle because one of the aqueous reactants has a concentration greater than standard conditions and the one aqueous product has a concentration less than standard conditions. Therefore, the reaction has a greater tendency to proceed toward products and a greater cell potential.

For Practice 19.8

Determine the cell potential of an electrochemical cell based on the following two half-reactions:

 $\begin{array}{l} \textit{Oxidation: Ni}(s) \longrightarrow Ni^{2+}(aq,\,2.0\text{ M}) + 2\text{ e}^- \\ \textit{Reduction: VO}^{2+}(aq,\,0.010\text{ M}) + 2\text{ H}^+(aq,\,1.0\text{ M}) + \text{e}^- \longrightarrow \text{VO}^{2+}(aq,\,2.0\text{ M}) + \text{H}_2\text{O}(l) \end{array}$

Chemistry: A Molecular Approach, 4th Edition Nivaldo J. Tro

© 2017 Pearson Education, Inc.

Electrolysis Easer = -ve ~ non-sport but we can drive up input of elec. energy (+1) (-1) (0) (0) elec. put . ex: $2NaCl \longrightarrow 2Na + Cl_2$ red pot 1 (+1) (o) red, cathode $2\times(e^{-} + Na^{+} \longrightarrow Na^{-}) E^{\circ} = -2.71V$ ox, anode $1\times(2Ce^{-} \longrightarrow Cl_{2} + 2e^{-}) E^{\circ} = +1.36V$ catuode anode 2Na++2C1-2+>2Na+C12 Erool=(-2.71V)-(+1.36V) = - 4.07V (non-spontaneous), We must provide voltage >4.07V to drive mu. Stoichionetry of electrolysis We can predict mass of products formed during electrolysis. How? Need to know: (1) Electrical current (A) (2) time (s) Q Current(A) = Charge(C) I = Qtime (s) 1A=1% ex: What's total charge if 30.0A flows for 51.0 min?

$$I = Q \implies Q = I + I$$

$$I = 30.0 \% \times 51.0 \text{ min} \times \frac{60}{1 \text{ min}}$$

$$= 37,800 C \quad 91,800 c$$

$$E_{X}: \text{ how many mol} e^{-1} \text{ is this }?$$

$$IF = 96,500 C/\text{mol}$$

$$91,800 \qquad 0.9513 \text{ mol} e^{-1}$$

$$H \text{ mol} e^{-2} = 37,800 c \times \frac{1 \text{ mol} e^{-2}}{96,500 c}$$

$$E_{X}: \text{ What mass of } Q_{2} \text{ can we make }?$$

$$0.9513 \text{ mol} e^{-1} \times \frac{(\text{mol} \Omega_{2} \times \sqrt{70.91} \text{ gc} \Omega_{2}}{2 \text{ mol} e^{-1} \text{ Imol} \Omega_{2}}$$

$$2Q_{1}^{-} \Rightarrow Q_{2} + 2e^{-1}$$

$$e_{X}: \text{ What mass of } Na \text{ can we make }?$$

$$0.9513 \text{ mol} e^{-1} \times \frac{(\text{mol} Na}{1 \text{ mol} R^{2}} = 21.9 \text{ g Na}$$

$$e^{-1} + Na^{+} \rightarrow Na$$

Example 19.10 Stoichiometry of Electrolysis

Continued Check

The answer has the correct units (g Au). The magnitude of the answer is reasonable if you consider that 10 amps of current for 1 hour is the equivalent of about 1/3 mol of electrons (check for yourself), which would produce 1/9 mol (or about 20 g) of gold.

For Practice 19.10

Silver can be plated out of a solution containing $\mathrm{Ag}^{\scriptscriptstyle +}$ according to the half-reaction:

 $Ag^+(aq) + e^- \longrightarrow Ag(s)$

How much time (in minutes) does it take to plate 12 g of silver using a current of 3.0 A?

Chemistry: A Molecular Approach, 4th Edition Nivaldo J. Tro © 2017 Pearson Education, Inc.