^{\circ 1} A student is asked to measure 30.0 g of methanol (d = 0.7914 g/mL at 25°C) but has only a graduated cylinder with which to measure it. What volume of methanol should the student use to obtain the required 30.0 g?

(A)	23.7 mL	(B)	30.0 mL
(C)	32.4 mL	(D)	37.9 mL

Which compound contains the highest percentage of nitrogen by mass?

(A)
$$NH_2OH (M = 33.0)$$

(C)
$$N_2O_3 (M = 76.0)$$

Q2

(B) NH₄NO₂ (M = 64.1)

(D)
$$NH_4NH_2CO_2$$
 ($M = 78.1$)

Q7

Use the thermodynamic information:

 $\begin{array}{ll} \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g) & \Delta H^\circ = 90.4 \text{ kJ/mol} \\ \frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g) & \Delta H^\circ = 33.8 \text{ kJ/mol} \\ 2NO_2(g) \rightarrow N_2O_4(g) & \Delta H^\circ = -58.0 \text{ kJ/mol} \\ \text{to calculate } \Delta H^\circ \text{ in kJ/mol for the reaction:} \\ 2NO(g) + O_2(g) \rightarrow N_2O_4(g) \\ \textbf{(A)} & -171.2 \quad \textbf{(B)} & -114.6 \quad \textbf{(C)} & 114.6 \quad \textbf{(D)} & 171.2 \end{array}$

So the substance has a non-zero standard free energy of formation?
(A) Pb(s) (B) Hg(l) (C) Cl₂(g) (D) O₃(g)

Q10

A reaction is endothermic with $\Delta H = 100$. kJ/mol. If the activation enthalpy of the forward reaction is 140. kJ/mol, what is the activation enthalpy of the reverse reaction?

(A)	40. kJ/mol	(B)	100. kJ/mol
(C)	140. kJ/mol	(D)	240. kJ/mol

10

What is the equilibrium expression, K_c , for the reaction: $2S(s) + 3O_2(g) \longrightarrow 2SO_3(g)$? (A) $K_c = 2[SO_3]/(2[S]+3[O_2])$ (B) $K_c = 2[SO_3]/3[O_2]$ (C) $K_c = [SO_3]^2/[S]^2[O_2]^3$ (D) $K_c = [SO_3]^2/[O_2]^3$

Classical What is the pH of a solution that is 0.20 M in HF and 0.40 M in NaF? $[K_a = 7.2 \times 10^{-4}]$ (A) 1.92 (B) 2.84 (C) 3.14 (D) 3.44

9

Ag⁺(aq) + e⁻
$$\rightarrow$$
 Ag(s) E° = 0.80 V
Co²⁺(aq) + 2e⁻ \rightarrow Co(s) E° = -0.28 V
Use the standard reduction potentials to determine the
standard potential for the reaction:
Co(s) + 2Ag⁺(aq) \rightarrow Co²⁺(aq) + 2Ag(s)
(A) 0.52V (B) 0.66V (C) 1.08V (D) 1.88V

2	1	

Answors			
AIISWEIS			
1. D	9. D	17. C	
2. B	10. A	18. A	
3. C	11. C	19. A	
4. A	12. D	20. C	
5. A	13. A		
6. A	14. D		
7. A	15. A		
8. D	16. B		
			22