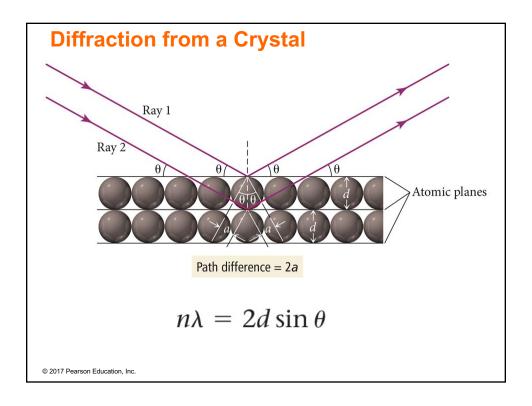
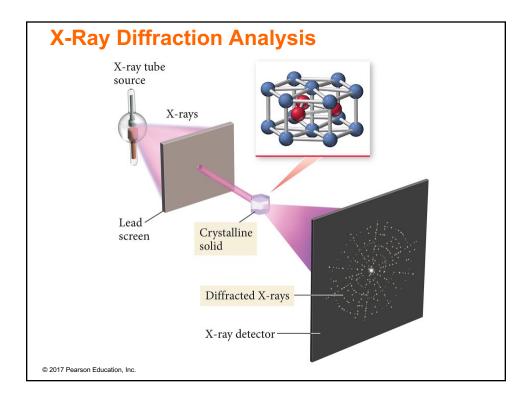


Lecture Presentation

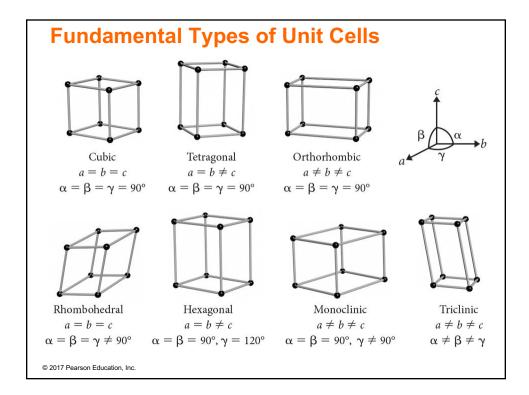
Chapter 12


Solids and Modern Materials


Graphene

- Thinnest, strongest known material; only one atom thick
- Conducts heat and electricity
- Transparent and completely impermeable to all substances
- Potential to be used in making faster computers, foldable touchscreens, ultrathin light panels, super-strong plastics for satellites, airplanes, ships, and cars

X-Ray Crystallography


- **X-ray diffraction** is a powerful technique that allows us to look into crystals to determine the arrangement of the atoms and measure the distances between them.
- Atomic planes within crystals are separated by about 10² pm.
- X-ray light forms interference patterns or diffraction patterns when it interacts with atoms in the crystal.
- Path length traveled by different rays and angle of reflection tell us the distance between planes of atoms.

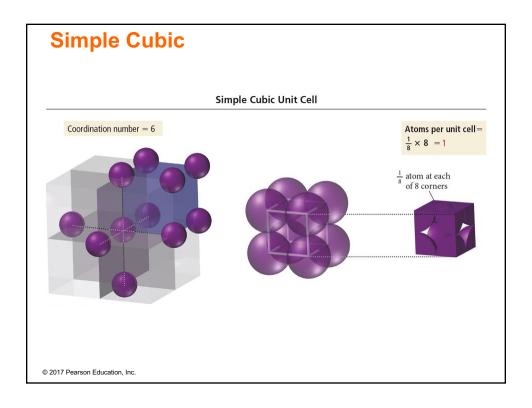
Crystal Lattice

- X-ray crystallography allows us to determine the regular arrangements of atoms within a crystalline solid.
- This arrangement is called the crystal lattice.
- The smallest unit that shows the pattern of arrangement for all the particles is called the **unit cell**.
- Unit cells are repeated over and over to give the macroscopic crystal structure of the solid.
- We usually classify unit cells by their symmetry.

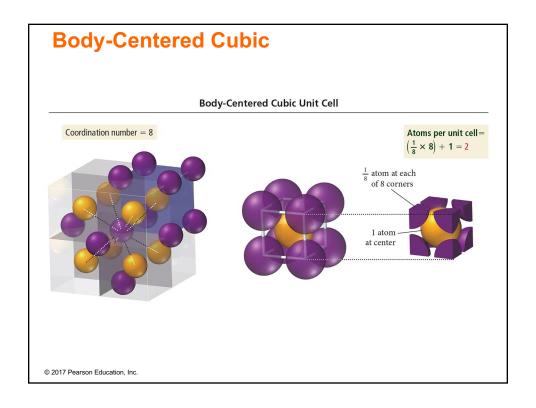
Unit Cells

- The number of other particles each particle is in contact with is called its coordination number.
 - For ions, it is the number of oppositely charged ions an ion is in contact with.
- A higher coordination number means more interaction; therefore, stronger attractive forces hold the crystal together.
- The **packing efficiency** is the percentage of volume in the unit cell occupied by particles.
 - The higher the coordination number, the more efficiently the particles are packed together.

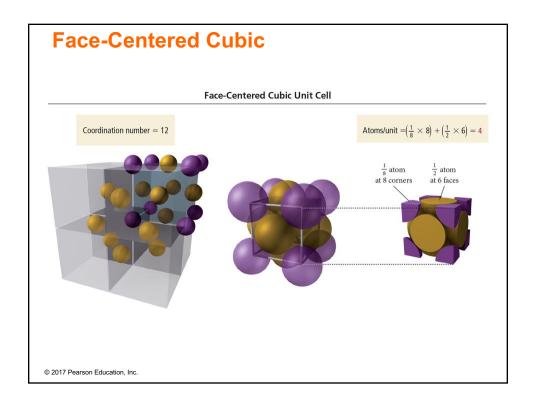
Cubic Unit Cells


- All unit cell corners are 90° angles.
- The length of all the edges is equal.
- Three types: simple cubic, body-centered cubic, and face-centered cubic
- If the unit cell is composed of spherical particles
 - 1/8 of each corner particle is within the cube.
 - $-\frac{1}{2}$ of each particle on a face is within the cube.
 - $-\frac{1}{4}$ of each particle on an edge is within the cube.

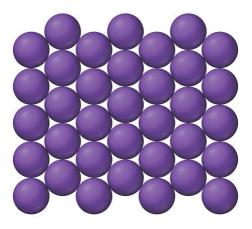
Cubic Cell Name	Atoms per Unit Cell	Structure	Coordination Number	Edge Length in terms of <i>r</i>	Packing Efficiency (fraction of volume occupie
Simple Cubic	1	83	6	2r	52%
Body-Centered Cubic	2	88	8	$\frac{4r}{\sqrt{3}}$	68%
Face-Centered Cubic	4		12	2√2r	74%


Cubic Unit Cells: Simple Cubic

- Eight particles, one at each corner of a cube
- 1/8 of each particle lies in the unit cell.
 - Each particle part of eight cells
 - Total = one particle in each unit cell
 - 8 corners × 1/8
- Edge of unit cell = twice the radius
- Coordination number of 6

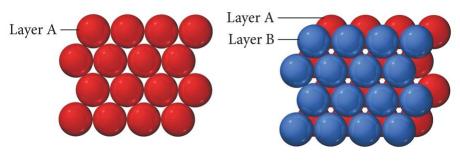

Cubic Unit Cells: Body-Centered Cubic

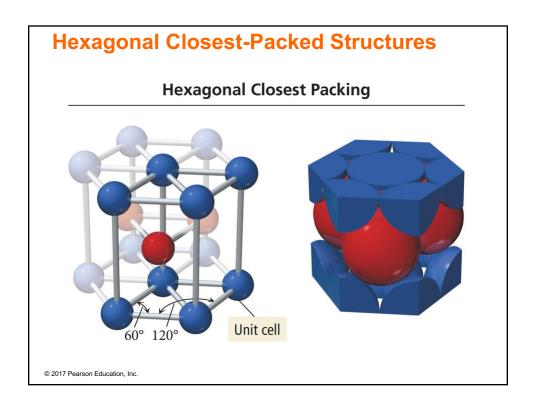
- Nine particles, one at each corner of a cube + one in center
- 1/8 of each corner particle lies in the unit cell.
 - Two particles in each unit cell
 - 8 corners × 1/8
 - + 1 center
- Edge of unit cell = $(4/\sqrt{3})$ times the radius of the particle
- · Coordination number of 8

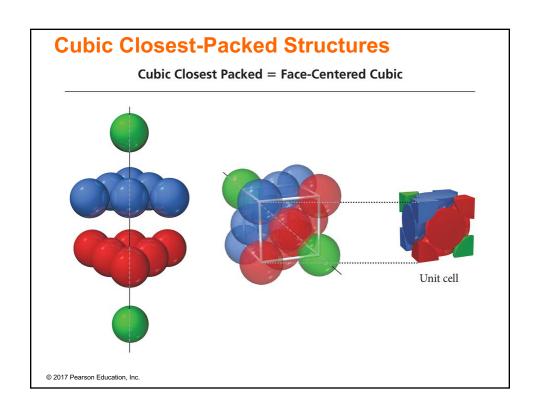

Cubic Unit Cells: Face-Centered Cubic

- 14 particles, one at each corner of a cube
 + one in center of each face
- 1/8 of each corner particle + 1/2 of face particle lies in the unit cell.
 - 4 particles in each unit cell
 - 8 corners × 1/8
 - + 6 faces × ½
- Edge of unit cell = $2\sqrt{2}$ times the radius of the particle
- Coordination number of 12

Closest-Packed Structures First Layer

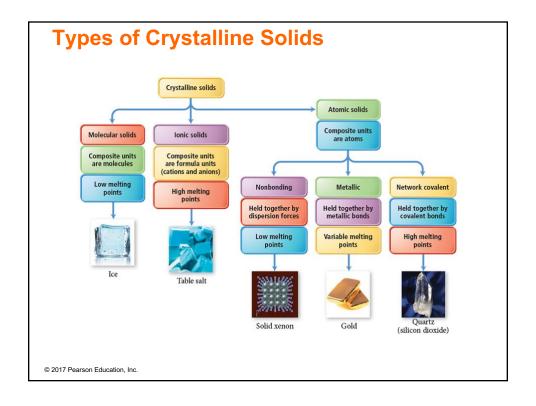

• With spheres, it is more efficient to offset each row in the gaps of the previous row than to line up rows and columns.




© 2017 Pearson Education, Inc.

Closest-Packed Structures Second Layer

- The second layer atoms can sit directly over the atoms in the first layer—called an AA pattern.
- Or, the second layer can sit over the holes in the first layer—called an **AB** pattern.


Classifying Crystalline Solids

- Crystalline solids are classified by the individual particles that comprise them: molecular, ionic, and atomic.
- Atomic solids are classified by the kinds of attractive forces holding the particles together: nonbonded, metallic, and network covalent.

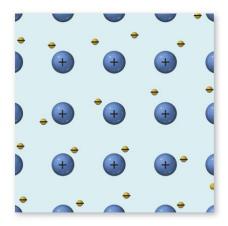
© 2017 Pearson Education, Inc.

Classifying Crystalline Solids

- Molecular solids are solids whose composite particles are molecules.
- lonic solids are solids whose composite particles are ions.
- Atomic solids are solids whose composite particles are atoms.
 - Nonbonding atomic solids are held together by dispersion forces.
 - Metallic atomic solids are held together by metallic bonds.
 - Network covalent atomic solids are held together by covalent bonds.

Molecular Solids

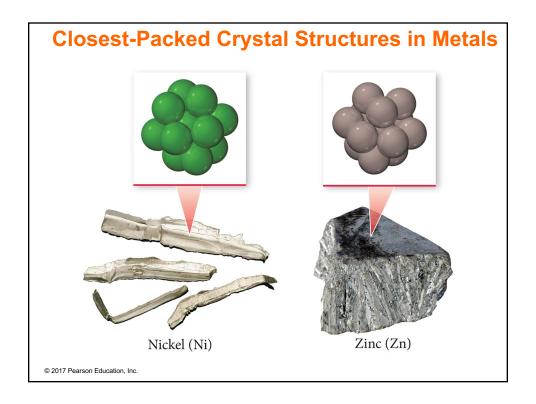
- The lattice sites are occupied by molecules.
 - CO₂, H₂O, C₁₂H₂₂O₁₁
- The molecules are held together by intermolecular attractive forces.
 - Dispersion forces, dipole-dipole attractions, and H bonds
- Weak attractive forces, relatively low melting points
- Some crystallize in different structures, called polymorphs.
 - Different properties
 - Important in pharmaceuticals


Crystalline Structure	alline Forms of Cocoa		Increasing Density
Type (Polymorph)	Melting Point (°C)	Description Soft, crumbly, noticeable blooming, melts in the hand.	and Stability
I.	23.3	Soft, crumbly, noticeable blooming, melts in the hand.	
II.	25.5	Firm, poor snap, some blooming, melts in the hand.	
V	27.3	Firm, poor snap, some blooming, melts in the hand.	
/	33.8	Firm, good snap, smooth and shiny surface, melts in the mouth, most desirable.	
/I	36.3	Hard, some blooming, cannot be formed from melt, takes several months to form.	

Ionic Solids

- Lattice sites are occupied by ions.
- They are held together by strong coulombic forces.
- High melting points

Metallic Bonding


- Metal atoms release their valence electrons.
- Metal cation "islands" fixed in a "sea" of mobile electrons

© 2017 Pearson Education, Inc.

Atomic Solids

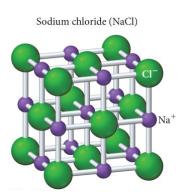
- Nonbonding atomic solids
 - Held together by weak dispersion forces
 - Very low melting points
 - Noble gases in solid form
- Metallic atomic solids
 - Held together by metallic bonding
 - Varying melting points
 - Form closest-packed crystal structures
- · Network covalent solids
 - Held together by covalent bonds
 - Structure restricted by geometry of bonds
 - Very high melting points

Ionic Solids

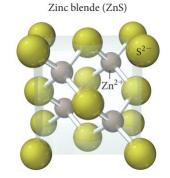
- Structure must accommodate both cations and anions.
- The coordination number represents the number of close cation—anion interactions in the crystal.
- The higher the coordination number, the more stable the solid.
 - Lowers the potential energy of the solid
- The coordination number depends on the relative sizes of the cations and anions that maintain charge balance.
 - Generally, anions are larger than cations.
 - The number of anions that can surround the cation is limited by the size of the cation.
 - The closer in size the ions are, the higher the coordination number.

Cesium Chloride Structure

- Coordination number = 8
- 1/8 of each Cl⁻ (184 pm) inside the unit cell
- Whole Cs⁺ (167 pm) inside the unit cell
 - Cubic hole = hole in simple cubic arrangement of Cl⁻ ions
- Cs:Cl = 1: (8 × ⅓); therefore the formula is CsCl.


Cesium chloride (CsCl)

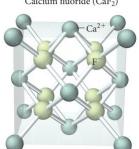
© 2017 Pearson Education, Inc.

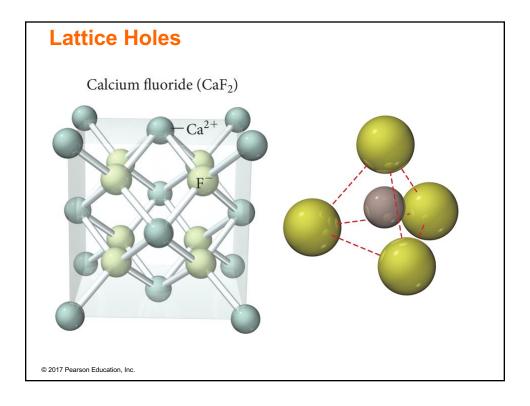

Rock Salt Structure

- Coordination number = 6
- Cl⁻ ions (181 pm) in a facecentered cubic arrangement.
 - 1/8 of each corner CI⁻ inside the unit cell
 - ½ of each face Cl⁻inside the unit cell
- Na⁺ (97 pm) in holes between Cl⁻
 - Octahedral holes
 - 1 in center of unit cell
 - 1 whole particle in every octahedral hole
 - 1/4 of each edge Na⁺ inside the unit cell
- Na:Cl = $(\frac{1}{4} \times 12) + 1$: $(\frac{1}{8} \times 8) + (\frac{1}{2} \times 6) = 4$:4 = 1:1
- Therefore, the formula is NaCl.

Zinc Blende Structure

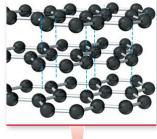
- Coordination number = 4
- S2- ions (184 pm) in a face-centered cubic arrangement
 - 1/2 of each corner S2- inside the unit cell
 - ½ of each face S²⁻ inside the unit cell
- Each Zn²⁺ (74 pm) in holes between S2-
 - Tetrahedral holes
 - 1 whole particle in ½ the holes
- Zn:S = (4×1) : $(\frac{1}{8} \times 8)$ + $(\frac{1}{2} \times 6)$ = 4:4 = 1:1
- Therefore, the formula is ZnS.




© 2017 Pearson Education, Inc.

Fluorite Structure

- Coordination number = 4
- Ca²⁺ ions (99 pm) in a face-centered cubic arrangement
 - 1/8 of each corner Ca²⁺ inside the unit cell
 - ½ of each face Ca²⁺ inside the unit cell
- Each F⁻ (133 pm) in holes between Ca2+
 - Tetrahedral holes
 - 1 whole particle in all the holes
- Ca:F = $(\frac{1}{8} \times 8) + (\frac{1}{2} \times 6)$: $(8 \times 1) = 4$:8 = 1:2
- Therefore, the formula is CaF₂.
 - Fluorite structure common for 1:2 ratio.
- Usually get the antifluorite structure when the cation:anion ratio is 2:1
 - The anions occupy the lattice sites, and the cations occupy the tetrahedral holes.



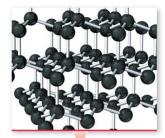
Network Covalent Atomic Solids: Carbon

- · Graphite and diamond
- In graphite, the carbon atoms in a sheet are covalently bonded together.
 - Forming six-member flat rings fused together
 - · Similar to benzene
 - Bond length = 142 pm
 - $-sp^2$
 - Each C has three sigma bonds and one pi bond.
 - Trigonal-planar geometry
 - Each sheet a giant molecule
- The sheets are then stacked and held together by dispersion forces.
 - Sheets are 341 pm apart.

Properties of Graphite

- High melting point, ~3800 °C
 - Need to overcome some covalent bonding
- · Slippery feel
 - Because there are only dispersion forces holding the sheets together, they can slide past each other.
 - · Glide planes
 - Lubricants
- · Electrical conductor
 - Parallel to sheets
- · Thermal insulator
- Chemically very nonreactive

(a) Graphite

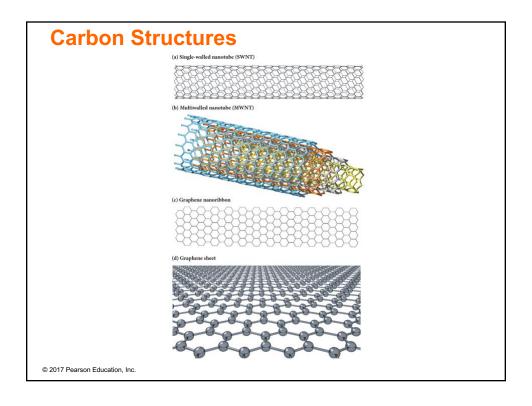

© 2017 Pearson Education, Inc.

Diamond

- The carbon atoms in a diamond each have four covalent bonds to surrounding atoms.
 - $-sp^3$
 - Tetrahedral geometry
- This effectively makes each crystal one giant molecule held together by covalent bonds.
 - You can follow a path of covalent bonds from any atom to every other atom.

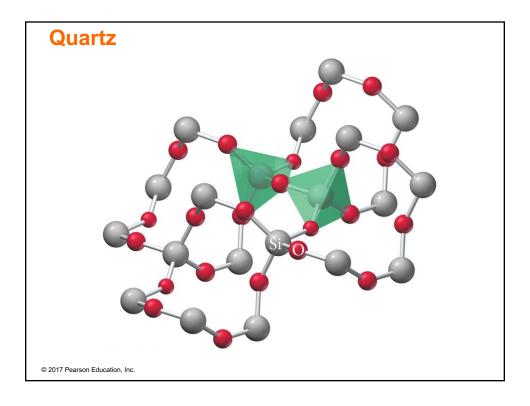
Properties of Diamond

- Very high melting point, ~3800 °C
 - Need to overcome some covalent bonds
- Very rigid
 - Due to the directionality of the covalent bonds
- Very hard
 - Strong covalent bonds holding the atoms in position
 - Used as abrasives
- · Electrical insulator
- Thermal conductor
 - Best known
- Chemically very nonreactive



(b) Diamond

© 2017 Pearson Education, Inc.


Buckministerfullerenes and Nanotubes

- Form of carbon, discovered in 1980s
- Occurs as soccer-ball-shaped clusters of 60 carbon atoms (C₆₀).
- Called fullerenes, or bucky balls
- Nanotubes—sheets of interconnected
 C₆ rings that assume the shape of a cylinder
 - Single-walled tubes—one layer of interconnected rings
 - Multiwalled tubes—concentric layers of interconnected rings

Silicates

- ~90% of Earth's crust
- Extended network covalent structure
 - Si atom bonded to four O atoms; each O atom bonded to two Si atoms
 - Tetrahedral
- Quartz

Ceramics

- Ceramics—inorganic, nonmetallic solids prepared from powders mixed with water, formed into the desired shape, and then heated
- Extensively used to make bricks, tiles, pottery, dishware, and insulating elements in electrical devices
- · Aluminosilicates, clay
 - Kaolinite, Al₂Si₂O₅(OH)₄,heated above 1500 °C gives a white ceramic.
 - Most important component in porcelain

Oxide Ceramics

- Most common: Al₂O₃ and MgO
- Both physically and chemically stable at high temperatures
- Outstanding refractory materials—materials that can be used in high-temperature applications
 - Industrial furnaces, high-speed cutting tools, crucibles, heating elements, and fire proofing
 - Tend to be brittle and subject to thermal shock

© 2017 Pearson Education, Inc.

Nonoxide Ceramics

- Include Si₃N₄, BN, and SiC
- Si₃N₄—network covalent solid with a structure similar to silica
- BN—isoelectronic with C₂ and forms structures similar to carbon
 - Has the diamond structure, which results in a hard, strong substance similar to diamond

Ceramics

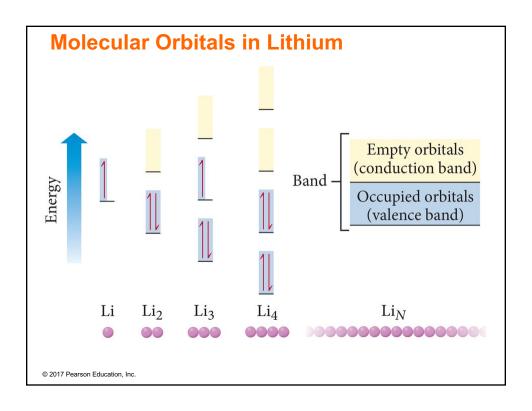
© 2017 Pearson Education, Inc.

Glass

- Glass—quickly cooled amorphous silica
- · Vitreous silica or fused silica
 - Hard, high-temperature resistant, low thermal expansion, transparent to visible and UV light
 - Expensive for most applications
- Soda-lime glass (window glass)
 - 70% silica, balance of mostly Na₂O and CaO
 - Transparent to visible light but not UV
 - High thermal expansion
 - Less expensive, but cracks under thermal shock

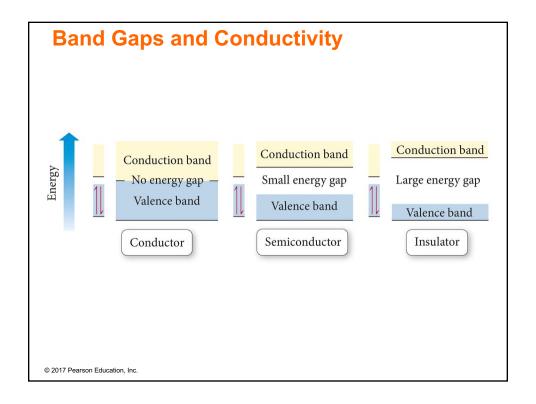
Glass

- Borosilicate glass (also known as Pyrex)
 - Has added boric acid instead of CaO to glass mixture
 - Withstands heating and cooling cycles
- · Leaded glass or crystal
 - PbO mixed with SiO₂
 - High refractive index; makes ringing sound when tapped
 - Toxicity concerns; lead-free crystal development


© 2017 Pearson Education, Inc.

Semiconductors and Band Theory

- The structures of metals and covalent network solids result in every atom's orbitals being shared by the entire structure—molecular orbitals.
- Molecular orbitals are delocalized over entire molecule.
- **Band theory**—stems from molecular orbital theory, with orbitals delocalized over entire crystal.


Band Theory

- The band of bonding molecular orbitals is called the **valence band**.
- The band of antibonding molecular orbitals is called the **conduction band**.

Band Gap and Conductivity

- Band gap—energy gap between valence and conduction bands
- Conductors—valence band and conduction band energetically continuous
- Semiconductors—have band gap; electrons can be promoted from valence to conduction band.
- Insulators—large band gap restricting electron promotion

Band Gap of Group IV Elements

Group 4A Element	Atomic Radius (pm)	Band Gap	Classification
Carbon (diamond)	77	5.5 eV	Insulator
Silicon	118	1.11 eV	Semiconductor
Germanium	122	0.67 eV	Semiconductor
Tin	140	0.08 eV	Metal
Lead	180	none	Metal

© 2017 Pearson Education, Inc.

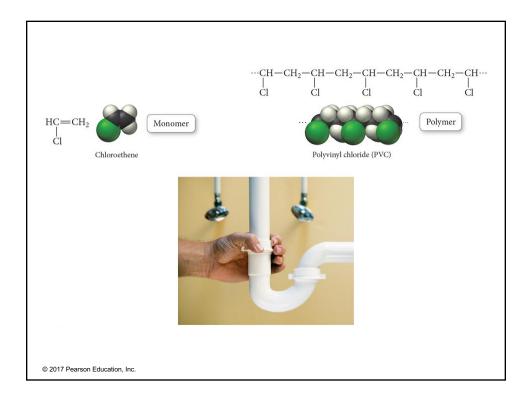
Doping Semiconductors

- Doping—adding impurities to semiconductor's crystal to increase its conductivity
 - To increase the number of electrons in the conduction band
- n-type semiconductors—doped by adding electron-rich impurities; negatively charged electrons in conduction band
- p-type semiconductors—doped with an electron-deficient impurity, resulting in electron "holes" in the valence band
 - Electrons can jump between these holes in the valence band, allowing conduction of electricity.

Diodes

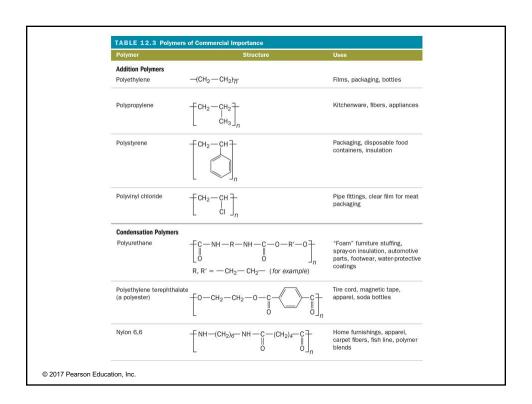
- When a p-type semiconductor adjoins an n-type semiconductor, the result is a **p-n junction**.
- Electricity can flow across the p-n junction in only one direction; this is called a **diode**.
- This also allows the accumulation of electrical energy, called an amplifier.

© 2017 Pearson Education, Inc.


Polymers

- Polymers—very large molecules made by repeated linking together of monomers
 - Monomers—small molecules

Ethene or ethylene


Polymers

- Natural polymers—polymers found in living organisms, like starches, proteins, and DNA
- Synthetic polymers—polymers made in a lab
 - Plastics, Styrofoam cups, nylon rope, Plexiglas

Polymerization

- **Polymerization** is the process of linking monomer units together.
- Addition polymerization—Monomers link together without the elimination of any atoms.
- Condensation polymerization—involves the elimination of an atom or a small group of atoms
- Copolymer—consists of two different kinds of monomers
- Dimer—product that forms between the reaction of two monomers

